About the Project

limit%20forms%20as%20%E2%84%91%CF%84%E2%86%920%2B

AdvancedHelp

(0.013 seconds)

1—10 of 837 matching pages

1: 1.13 Differential Equations
β–Ί
§1.13(vii) Closed-Form Solutions
β–Ί
§1.13(viii) Eigenvalues and Eigenfunctions: Sturm-Liouville and Liouville forms
β–ΊThis is the Sturm-Liouville form of a second order differential equation, where denotes d d x . Assuming that u ⁑ ( x ) satisfies un-mixed boundary conditions of the formβ–Ί
Transformation to Liouville normal Form
2: 26.3 Lattice Paths: Binomial Coefficients
β–Ί
Table 26.3.2: Binomial coefficients ( m + n m ) for lattice paths.
β–Ί β–Ίβ–Ίβ–Ί
m n
3 1 4 10 20 35 56 84 120 165
β–Ί
β–Ί
26.3.4 m = 0 ( m + n m ) ⁒ x m = 1 ( 1 x ) n + 1 , | x | < 1 .
β–Ί
26.3.11 ( 2 ⁒ n n ) = 2 n ⁒ ( 2 ⁒ n 1 ) ⁒ ( 2 ⁒ n 3 ) ⁒ β‹― ⁒ 3 1 n ! .
β–Ί
§26.3(v) Limiting Form
β–Ί
26.3.12 ( 2 ⁒ n n ) 4 n Ο€ ⁒ n , n .
3: 26.5 Lattice Paths: Catalan Numbers
β–Ί
26.5.1 C ⁑ ( n ) = 1 n + 1 ⁒ ( 2 ⁒ n n ) = 1 2 ⁒ n + 1 ⁒ ( 2 ⁒ n + 1 n ) = ( 2 ⁒ n n ) ( 2 ⁒ n n 1 ) = ( 2 ⁒ n 1 n ) ( 2 ⁒ n 1 n + 1 ) .
β–Ί
26.5.4 C ⁑ ( n + 1 ) = 2 ⁒ ( 2 ⁒ n + 1 ) n + 2 ⁒ C ⁑ ( n ) ,
β–Ί
26.5.5 C ⁑ ( n + 1 ) = k = 0 n / 2 ( n 2 ⁒ k ) ⁒ 2 n 2 ⁒ k ⁒ C ⁑ ( k ) .
β–Ί
§26.5(iv) Limiting Forms
β–Ί
26.5.7 lim n C ⁑ ( n + 1 ) C ⁑ ( n ) = 4 .
4: 20 Theta Functions
Chapter 20 Theta Functions
5: 33.18 Limiting Forms for Large β„“
§33.18 Limiting Forms for Large β„“
β–Ί
f ⁑ ( Ο΅ , β„“ ; r ) ( 2 ⁒ r ) β„“ + 1 ( 2 ⁒ β„“ + 1 ) ! ,
β–Ί
h ⁑ ( Ο΅ , β„“ ; r ) ( 2 ⁒ β„“ ) ! Ο€ ⁒ ( 2 ⁒ r ) β„“ .
6: 26.9 Integer Partitions: Restricted Number and Part Size
β–ΊThe conjugate to the example in Figure 26.9.1 is 6 + 5 + 4 + 2 + 1 + 1 + 1 . … β–Ί
Figure 26.9.2: The partition 5 + 5 + 3 + 2 represented as a lattice path.
β–ΊEquations (26.9.2)–(26.9.3) are examples of closed forms that can be computed explicitly for any positive integer k . … β–Ί
p 2 ⁑ ( n ) = 1 + n / 2 ,
β–Ί
§26.9(iv) Limiting Form
7: 26.10 Integer Partitions: Other Restrictions
β–ΊThe set { 2 , 3 , 4 , } is denoted by T . If more than one restriction applies, then the restrictions are separated by commas, for example, p ⁑ ( π’Ÿ ⁒ 2 , T , n ) . … β–Ίwhere the sum is over nonnegative integer values of k for which n 1 2 ⁒ ( 3 ⁒ k 2 ± k ) 0 . … β–Ίwhere the sum is over nonnegative integer values of m for which n 1 2 ⁒ k ⁒ m 2 m + 1 2 ⁒ k ⁒ m 0 . … β–Ί
§26.10(v) Limiting Form
8: 26.12 Plane Partitions
β–ΊThe number of self-complementary plane partitions in B ⁑ ( 2 ⁒ r , 2 ⁒ s , 2 ⁒ t ) is …in B ⁑ ( 2 ⁒ r + 1 , 2 ⁒ s , 2 ⁒ t ) it is …in B ⁑ ( 2 ⁒ r + 1 , 2 ⁒ s + 1 , 2 ⁒ t ) it is … β–Ίin B ⁑ ( 2 ⁒ r + 1 , 2 ⁒ r + 1 , 2 ⁒ t ) it is … β–Ί
§26.12(iv) Limiting Form
9: Bibliography D
β–Ί
  • C. de la Vallée Poussin (1896a) Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction ΞΆ ⁒ ( s ) de Riemann et les nombres premiers en général, suivi d’un Appendice sur des réflexions applicables à une formule donnée par Riemann. Ann. Soc. Sci. Bruxelles 20, pp. 183–256 (French).
  • β–Ί
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M ⁒ x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • β–Ί
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • β–Ί
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • β–Ί
  • T. M. Dunster (1990a) Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter. SIAM J. Math. Anal. 21 (4), pp. 995–1018.
  • 10: 6.16 Mathematical Applications
    β–ΊThese limits are not approached uniformly, however. The first maximum of 1 2 ⁒ Si ⁑ ( x ) for positive x occurs at x = Ο€ and equals ( 1.1789 ⁒ ) × 1 4 ⁒ Ο€ ; compare Figure 6.3.2. Hence if x = Ο€ / ( 2 ⁒ n ) and n , then the limiting value of S n ⁑ ( x ) overshoots 1 4 ⁒ Ο€ by approximately 18%. Similarly if x = Ο€ / n , then the limiting value of S n ⁑ ( x ) undershoots 1 4 ⁒ Ο€ by approximately 10%, and so on. … β–ΊIf we assume Riemann’s hypothesis that all nonreal zeros of ΞΆ ⁑ ( s ) have real part of 1 2 25.10(i)), then …