About the Project

lattice parameter

AdvancedHelp

(0.001 seconds)

1—10 of 19 matching pages

1: 20.2 Definitions and Periodic Properties
20.2.1 θ 1 ( z | τ ) = θ 1 ( z , q ) = 2 n = 0 ( 1 ) n q ( n + 1 2 ) 2 sin ( ( 2 n + 1 ) z ) ,
20.2.2 θ 2 ( z | τ ) = θ 2 ( z , q ) = 2 n = 0 q ( n + 1 2 ) 2 cos ( ( 2 n + 1 ) z ) ,
20.2.3 θ 3 ( z | τ ) = θ 3 ( z , q ) = 1 + 2 n = 1 q n 2 cos ( 2 n z ) ,
20.2.5 z m , n = ( m + n τ ) π , m , n ,
20.2.10 M M ( z | τ ) = e i z + ( i π τ / 4 ) ,
2: 20.6 Power Series
20.6.2 θ 1 ( π z | τ ) = π z θ 1 ( 0 | τ ) exp ( j = 1 1 2 j δ 2 j ( τ ) z 2 j ) ,
20.6.3 θ 2 ( π z | τ ) = θ 2 ( 0 | τ ) exp ( j = 1 1 2 j α 2 j ( τ ) z 2 j ) ,
20.6.7 α 2 j ( τ ) = n = m = ( m 1 2 + n τ ) 2 j ,
20.6.8 β 2 j ( τ ) = n = m = ( m 1 2 + ( n 1 2 ) τ ) 2 j ,
20.6.9 γ 2 j ( τ ) = n = m = ( m + ( n 1 2 ) τ ) 2 j ,
3: 20.7 Identities
20.7.15 A A ( τ ) = 1 / θ 4 ( 0 | 2 τ ) ,
20.7.16 θ 1 ( 2 z | 2 τ ) = A θ 1 ( z | τ ) θ 2 ( z | τ ) ,
20.7.19 θ 4 ( 2 z | 2 τ ) = A θ 3 ( z | τ ) θ 4 ( z | τ ) .
§20.7(viii) Transformations of Lattice Parameter
20.7.28 θ 3 ( z | τ + 1 ) = θ 4 ( z | τ ) ,
4: 20.10 Integrals
§20.10(i) Mellin Transforms with respect to the Lattice Parameter
§20.10(ii) Laplace Transforms with respect to the Lattice Parameter
5: 20.1 Special Notation
m , n integers.
τ ( ) the lattice parameter, τ > 0 .
q ( ) the nome, q = e i π τ , 0 < | q | < 1 . Since τ is not a single-valued function of q , it is assumed that τ is known, even when q is specified. Most applications concern the rectangular case τ = 0 , τ > 0 , so that 0 < q < 1 and τ and q are uniquely related.
6: 20.5 Infinite Products and Related Results
20.5.5 θ 1 ( z | τ ) = θ 1 ( 0 | τ ) sin z n = 1 sin ( n π τ + z ) sin ( n π τ z ) sin 2 ( n π τ ) ,
20.5.6 θ 2 ( z | τ ) = θ 2 ( 0 | τ ) cos z n = 1 cos ( n π τ + z ) cos ( n π τ z ) cos 2 ( n π τ ) ,
20.5.7 θ 3 ( z | τ ) = θ 3 ( 0 | τ ) n = 1 cos ( ( n 1 2 ) π τ + z ) cos ( ( n 1 2 ) π τ z ) cos 2 ( ( n 1 2 ) π τ ) ,
20.5.8 θ 4 ( z | τ ) = θ 4 ( 0 | τ ) n = 1 sin ( ( n 1 2 ) π τ + z ) sin ( ( n 1 2 ) π τ z ) sin 2 ( ( n 1 2 ) π τ ) .
20.5.9 θ 3 ( π z | τ ) = n = p 2 n q n 2 = n = 1 ( 1 q 2 n ) ( 1 + q 2 n 1 p 2 ) ( 1 + q 2 n 1 p 2 ) ,
7: 20.9 Relations to Other Functions
20.9.1 k = θ 2 2 ( 0 | τ ) / θ 3 2 ( 0 | τ )
8: 20.11 Generalizations and Analogs
20.11.4 f ( a , b ) = θ 3 ( z | τ ) .
9: 23.1 Special Notation
𝕃 lattice in .
τ = ω 3 / ω 1 lattice parameter ( τ > 0 ).
10: 20.13 Physical Applications
20.13.1 θ ( z | τ ) / τ = κ 2 θ ( z | τ ) / z 2 ,