About the Project

large variable and%2For large parameter

AdvancedHelp

(0.011 seconds)

21—30 of 73 matching pages

21: Bibliography L
β–Ί
  • R. E. Langer (1934) The solutions of the Mathieu equation with a complex variable and at least one parameter large. Trans. Amer. Math. Soc. 36 (3), pp. 637–695.
  • β–Ί
  • H. T. Lau (2004) A Numerical Library in Java for Scientists & Engineers. Chapman & Hall/CRC, Boca Raton, FL.
  • β–Ί
  • J. L. López, P. Pagola, and E. Pérez Sinusía (2013a) Asymptotics of the first Appell function F 1 with large parameters II. Integral Transforms Spec. Funct. 24 (12), pp. 982–999.
  • β–Ί
  • J. L. López, P. Pagola, and E. Pérez Sinusía (2013b) Asymptotics of the first Appell function F 1 with large parameters. Integral Transforms Spec. Funct. 24 (9), pp. 715–733.
  • β–Ί
  • J. L. López (1999) Asymptotic expansions of the Whittaker functions for large order parameter. Methods Appl. Anal. 6 (2), pp. 249–256.
  • 22: 10.41 Asymptotic Expansions for Large Order
    β–Ί
    10.41.4 K Ξ½ ⁑ ( Ξ½ ⁒ z ) ( Ο€ 2 ⁒ Ξ½ ) 1 2 ⁒ e Ξ½ ⁒ Ξ· ( 1 + z 2 ) 1 4 ⁒ k = 0 ( 1 ) k ⁒ U k ⁑ ( p ) Ξ½ k ,
    23: Bibliography O
    β–Ί
  • A. B. Olde Daalhuis (2003a) Uniform asymptotic expansions for hypergeometric functions with large parameters. I. Analysis and Applications (Singapore) 1 (1), pp. 111–120.
  • β–Ί
  • A. B. Olde Daalhuis (2003b) Uniform asymptotic expansions for hypergeometric functions with large parameters. II. Analysis and Applications (Singapore) 1 (1), pp. 121–128.
  • β–Ί
  • A. B. Olde Daalhuis (2010) Uniform asymptotic expansions for hypergeometric functions with large parameters. III. Analysis and Applications (Singapore) 8 (2), pp. 199–210.
  • β–Ί
  • F. W. J. Olver (1975b) Legendre functions with both parameters large. Philos. Trans. Roy. Soc. London Ser. A 278, pp. 175–185.
  • β–Ί
  • F. W. J. Olver (1980b) Whittaker functions with both parameters large: Uniform approximations in terms of parabolic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 86 (3-4), pp. 213–234.
  • 24: 2.8 Differential Equations with a Parameter
    β–Ί
    2.8.3 d 2 W d ΞΎ 2 = ( u 2 ⁒ z Λ™ 2 ⁒ f ⁑ ( z ) + ψ ⁑ ( ΞΎ ) ) ⁒ W ,
    β–Ί
    2.8.8 d 2 W / d ξ 2 = ( u 2 ⁒ ξ m + ψ ⁑ ( ξ ) ) ⁒ W ,
    β–Ί
    2.8.9 d 2 W d ξ 2 = ( u 2 ξ + ρ ξ 2 ) ⁒ W ,
    25: 2.3 Integrals of a Real Variable
    β–Ί k ( ) and Ξ» are positive constants, Ξ± is a variable parameter in an interval Ξ± 1 Ξ± Ξ± 2 with Ξ± 1 0 and 0 < Ξ± 2 k , and x is a large positive parameter. …
    26: 12.10 Uniform Asymptotic Expansions for Large Parameter
    §12.10 Uniform Asymptotic Expansions for Large Parameter
    β–ΊIn this section we give asymptotic expansions of PCFs for large values of the parameter a that are uniform with respect to the variable z , when both a and z ( = x ) are real. … β–Ί
    §12.10(ii) Negative a , 2 ⁒ a < x <
    β–Ίβ–Ί
    27: 36.12 Uniform Approximation of Integrals
    β–ΊIn the cuspoid case (one integration variable) …where k is a large real parameter and 𝐲 = { y 1 , y 2 , } is a set of additional (nonasymptotic) parameters. …Also, f is real analytic, and K + 2 f / u K + 2 > 0 for all 𝐲 such that all K + 1 critical points coincide. … β–ΊFor example, the diffraction catastrophe Ξ¨ 2 ⁑ ( x , y ; k ) defined by (36.2.10), and corresponding to the Pearcey integral (36.2.14), can be approximated by the Airy function Ξ¨ 1 ⁑ ( ΞΎ ⁑ ( x , y ; k ) ) when k is large, provided that x and y are not small. … β–ΊFor K = 1 , with a single parameter y , let the two critical points of f ⁑ ( u ; y ) be denoted by u ± ⁑ ( y ) , with u + > u for those values of y for which these critical points are real. …
    28: 13.8 Asymptotic Approximations for Large Parameters
    §13.8 Asymptotic Approximations for Large Parameters
    β–Ί
    §13.8(ii) Large b and z , Fixed a and b / z
    β–Ί
    §13.8(iii) Large a
    β–Ίβ–Ί
    §13.8(iv) Large a and b
    29: 10.20 Uniform Asymptotic Expansions for Large Order
    β–Ί
    10.20.5 Y ν ⁑ ( ν ⁒ z ) ( 4 ⁒ ΢ 1 z 2 ) 1 4 ⁒ ( Bi ⁑ ( ν 2 3 ⁒ ΢ ) ν 1 3 ⁒ k = 0 A k ⁑ ( ΢ ) ν 2 ⁒ k + Bi ⁑ ( ν 2 3 ⁒ ΢ ) ν 5 3 ⁒ k = 0 B k ⁑ ( ΢ ) ν 2 ⁒ k ) ,
    β–Ί
    10.20.9 H Ξ½ ( 1 ) ⁑ ( Ξ½ ⁒ z ) H Ξ½ ( 2 ) ⁑ ( Ξ½ ⁒ z ) } 4 ⁒ e βˆ“ 2 ⁒ Ο€ ⁒ i / 3 z ⁒ ( 1 z 2 4 ⁒ ΞΆ ) 1 4 ⁒ ( e βˆ“ 2 ⁒ Ο€ ⁒ i / 3 ⁒ Ai ⁑ ( e ± 2 ⁒ Ο€ ⁒ i / 3 ⁒ Ξ½ 2 3 ⁒ ΞΆ ) Ξ½ 4 3 ⁒ k = 0 C k ⁑ ( ΞΆ ) Ξ½ 2 ⁒ k + Ai ⁑ ( e ± 2 ⁒ Ο€ ⁒ i / 3 ⁒ Ξ½ 2 3 ⁒ ΞΆ ) Ξ½ 2 3 ⁒ k = 0 D k ⁑ ( ΞΆ ) Ξ½ 2 ⁒ k ) ,
    30: 25.11 Hurwitz Zeta Function
    β–ΊWhen a = 1 2 , (25.11.10) reduces to (25.8.3); compare (25.11.11). … β–Ίwhere h , k are integers with 1 h k and n = 1 , 2 , 3 , . … β–Ί
    §25.11(xii) a -Asymptotic Behavior
    β–ΊSimilarly, as a in the sector | ph ⁑ a | 1 2 ⁒ Ο€ Ξ΄ ( < 1 2 ⁒ Ο€ ) , …For the more general case ΞΆ ⁑ ( m , a ) , m = 1 , 2 , , see Elizalde (1986). …