About the Project

large degree

AdvancedHelp

(0.001 seconds)

21—29 of 29 matching pages

21: 8.27 Approximations
  • DiDonato (1978) gives a simple approximation for the function F ( p , x ) = x p e x 2 / 2 x e t 2 / 2 t p d t (which is related to the incomplete gamma function by a change of variables) for real p and large positive x . This takes the form F ( p , x ) = 4 x / h ( p , x ) , approximately, where h ( p , x ) = 3 ( x 2 p ) + ( x 2 p ) 2 + 8 ( x 2 + p ) and is shown to produce an absolute error O ( x 7 ) as x .

  • Verbeeck (1970) gives polynomial and rational approximations for E p ( x ) = ( e x / x ) P ( z ) , approximately, where P ( z ) denotes a quotient of polynomials of equal degree in z = x 1 .

  • 22: 12.10 Uniform Asymptotic Expansions for Large Parameter
    §12.10 Uniform Asymptotic Expansions for Large Parameter
    §12.10(vi) Modifications of Expansions in Elementary Functions
    Modified Expansions
    23: 10.41 Asymptotic Expansions for Large Order
    §10.41 Asymptotic Expansions for Large Order
    §10.41(i) Asymptotic Forms
    §10.41(ii) Uniform Expansions for Real Variable
    24: 24.16 Generalizations
    For extensions of B n ( ) ( x ) to complex values of x , n , and , and also for uniform asymptotic expansions for large x and large n , see Temme (1995b) and López and Temme (1999b, 2010b). … B n ( x ) is a polynomial in x of degree n . …
    25: DLMF Project News
    error generating summary
    26: 28.35 Tables
  • National Bureau of Standards (1967) includes the eigenvalues a n ( q ) , b n ( q ) for n = 0 ( 1 ) 3 with q = 0 ( .2 ) 20 ( .5 ) 37 ( 1 ) 100 , and n = 4 ( 1 ) 15 with q = 0 ( 2 ) 100 ; Fourier coefficients for ce n ( x , q ) and se n ( x , q ) for n = 0 ( 1 ) 15 , n = 1 ( 1 ) 15 , respectively, and various values of q in the interval [ 0 , 100 ] ; joining factors g e , n ( q ) , f e , n ( q ) for n = 0 ( 1 ) 15 with q = 0 ( .5  to  10 ) 100 (but in a different notation). Also, eigenvalues for large values of q . Precision is generally 8D.

  • Zhang and Jin (1996, pp. 533–535) includes the zeros (in degrees) of ce n ( x , 10 ) , se n ( x , 10 ) for n = 1 ( 1 ) 10 , and the first 5 zeros of Mc n ( j ) ( x , 10 ) , Ms n ( j ) ( x , 10 ) for n = 0 or 1 ( 1 ) 8 , j = 1 , 2 . Precision is mostly 9S.

  • 27: 18.39 Applications in the Physical Sciences
    A relativistic treatment becoming necessary as Z becomes large as corrections to the non-relativistic Schrödinger picture are of approximate order ( α Z ) 2 ( Z / 137 ) 2 , α being the dimensionless fine structure constant e 2 / ( 4 π ε 0 c ) , where c is the speed of light. …
    28: Bibliography K
  • N. Kimura (1988) On the degree of an irreducible factor of the Bernoulli polynomials. Acta Arith. 50 (3), pp. 243–249.
  • U. J. Knottnerus (1960) Approximation Formulae for Generalized Hypergeometric Functions for Large Values of the Parameters. J. B. Wolters, Groningen.
  • 29: 3.11 Approximation Techniques
    Then there exists a unique n th degree polynomial p n ( x ) , called the minimax (or best uniform) polynomial approximation to f ( x ) on [ a , b ] , that minimizes max a x b | ϵ n ( x ) | , where ϵ n ( x ) = f ( x ) p n ( x ) . … Approximants with the same denominator degree are located in the same column of the table. … The matrix is symmetric and positive definite, but the system is ill-conditioned when n is large because the lower rows of the matrix are approximately proportional to one another. … Splines are defined piecewise and usually by low-degree polynomials. Given n + 1 distinct points x k in the real interval [ a , b ] , with ( a = ) x 0 < x 1 < < x n 1 < x n ( = b ), on each subinterval [ x k , x k + 1 ] , k = 0 , 1 , , n 1 , a low-degree polynomial is defined with coefficients determined by, for example, values f k and f k of a function f and its derivative at the nodes x k and x k + 1 . …