About the Project

large a and b

AdvancedHelp

(0.007 seconds)

11—20 of 102 matching pages

11: Bibliography W
  • M. I. Weinstein and J. B. Keller (1985) Hill’s equation with a large potential. SIAM J. Appl. Math. 45 (2), pp. 200–214.
  • 12: Bibliography Z
  • S. Zhang and J. Jin (1996) Computation of Special Functions. John Wiley & Sons Inc., New York.
  • 13: 8.18 Asymptotic Expansions of I x ( a , b )
    Large a , Fixed b
    For asymptotic expansions for large values of a and/or b of the x -solution of the equation …
    14: Bibliography N
  • M. Nardin, W. F. Perger, and A. Bhalla (1992a) Algorithm 707: CONHYP: A numerical evaluator of the confluent hypergeometric function for complex arguments of large magnitudes. ACM Trans. Math. Software 18 (3), pp. 345–349.
  • M. Nardin, W. F. Perger, and A. Bhalla (1992b) Numerical evaluation of the confluent hypergeometric function for complex arguments of large magnitudes. J. Comput. Appl. Math. 39 (2), pp. 193–200.
  • T. D. Newton (1952) Coulomb Functions for Large Values of the Parameter η . Technical report Atomic Energy of Canada Limited, Chalk River, Ontario.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • Numerical Recipes (commercial C, C++, Fortran 77, and Fortran 90 libraries)
  • 15: 8.12 Uniform Asymptotic Expansions for Large Parameter
    §8.12 Uniform Asymptotic Expansions for Large Parameter
    Higher coefficients A k ( χ ) , B k ( χ ) , up to k = 8 , are given in Paris (2002b). Lastly, a uniform approximation for Γ ( a , a x ) for large a , with error bounds, can be found in Dunster (1996a). …
    Inverse Function
    As a special case, …
    16: 2.3 Integrals of a Real Variable
    Alternatively, assume b = , q ( t ) is infinitely differentiable on [ a , ) , and each of the integrals e i x t q ( s ) ( t ) d t , s = 0 , 1 , 2 , , converges as t uniformly for all sufficiently large x . … When p ( t ) is real and x is a large positive parameter, the main contribution to the integral … When the parameter x is large the contributions from the real and imaginary parts of the integrand in …
    17: Bibliography L
  • J. L. López and P. J. Pagola (2010) The confluent hypergeometric functions M ( a , b ; z ) and U ( a , b ; z ) for large b and z . J. Comput. Appl. Math. 233 (6), pp. 1570–1576.
  • 18: Bibliography D
  • A. Deaño, J. Segura, and N. M. Temme (2010) Computational properties of three-term recurrence relations for Kummer functions. J. Comput. Appl. Math. 233 (6), pp. 1505–1510.
  • T. M. Dunster (1986) Uniform asymptotic expansions for prolate spheroidal functions with large parameters. SIAM J. Math. Anal. 17 (6), pp. 1495–1524.
  • T. M. Dunster (1990a) Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter. SIAM J. Math. Anal. 21 (4), pp. 995–1018.
  • T. M. Dunster (1991) Conical functions with one or both parameters large. Proc. Roy. Soc. Edinburgh Sect. A 119 (3-4), pp. 311–327.
  • T. M. Dunster (2003b) Uniform asymptotic expansions for associated Legendre functions of large order. Proc. Roy. Soc. Edinburgh Sect. A 133 (4), pp. 807–827.
  • 19: Bibliography T
  • N. M. Temme (1986) Laguerre polynomials: Asymptotics for large degree. Technical report Technical Report AM-R8610, CWI, Amsterdam, The Netherlands.
  • N. M. Temme (1987) On the computation of the incomplete gamma functions for large values of the parameters. In Algorithms for approximation (Shrivenham, 1985), Inst. Math. Appl. Conf. Ser. New Ser., Vol. 10, pp. 479–489.
  • N. M. Temme (1994b) Computational aspects of incomplete gamma functions with large complex parameters. In Approximation and Computation. A Festschrift in Honor of Walter Gautschi, R. V. M. Zahar (Ed.), International Series of Numerical Mathematics, Vol. 119, pp. 551–562.
  • N.M. Temme and E.J.M. Veling (2022) Asymptotic expansions of Kummer hypergeometric functions with three asymptotic parameters a, b and z. Indagationes Mathematicae.
  • J. Todd (1954) Evaluation of the exponential integral for large complex arguments. J. Research Nat. Bur. Standards 52, pp. 313–317.
  • 20: 27.16 Cryptography
    Applications to cryptography rely on the disparity in computer time required to find large primes and to factor large integers. For example, a code maker chooses two large primes p and q of about 400 decimal digits each. …For this reason, the codes are considered unbreakable, at least with the current state of knowledge on factoring large numbers. To code a message by this method, we replace each letter by two digits, say A = 01 , B = 02 , , Z = 26 , and divide the message into pieces of convenient length smaller than the public value n = p q . Choose a prime r that does not divide either p 1 or q 1 . …