About the Project

large%20%CE%BA

AdvancedHelp

(0.002 seconds)

1—10 of 229 matching pages

1: 28.16 Asymptotic Expansions for Large q
§28.16 Asymptotic Expansions for Large q
28.16.1 λ ν ( h 2 ) 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
2: 28.35 Tables
  • Ince (1932) includes eigenvalues a n , b n , and Fourier coefficients for n = 0 or 1 ( 1 ) 6 , q = 0 ( 1 ) 10 ( 2 ) 20 ( 4 ) 40 ; 7D. Also ce n ( x , q ) , se n ( x , q ) for q = 0 ( 1 ) 10 , x = 1 ( 1 ) 90 , corresponding to the eigenvalues in the tables; 5D. Notation: a n = 𝑏𝑒 n 2 q , b n = 𝑏𝑜 n 2 q .

  • Kirkpatrick (1960) contains tables of the modified functions Ce n ( x , q ) , Se n + 1 ( x , q ) for n = 0 ( 1 ) 5 , q = 1 ( 1 ) 20 , x = 0.1 ( .1 ) 1 ; 4D or 5D.

  • National Bureau of Standards (1967) includes the eigenvalues a n ( q ) , b n ( q ) for n = 0 ( 1 ) 3 with q = 0 ( .2 ) 20 ( .5 ) 37 ( 1 ) 100 , and n = 4 ( 1 ) 15 with q = 0 ( 2 ) 100 ; Fourier coefficients for ce n ( x , q ) and se n ( x , q ) for n = 0 ( 1 ) 15 , n = 1 ( 1 ) 15 , respectively, and various values of q in the interval [ 0 , 100 ] ; joining factors g e , n ( q ) , f e , n ( q ) for n = 0 ( 1 ) 15 with q = 0 ( .5  to  10 ) 100 (but in a different notation). Also, eigenvalues for large values of q . Precision is generally 8D.

  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ( q ) , b n + 1 ( q ) for n = 0 ( 1 ) 4 , q = 0 ( 1 ) 50 ; n = 0 ( 1 ) 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ( 50 ) 200 . Fourier coefficients for ce n ( x , 10 ) , se n + 1 ( x , 10 ) , n = 0 ( 1 ) 7 . Mathieu functions ce n ( x , 10 ) , se n + 1 ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , x = 0 ( 5 ) 90 . Modified Mathieu functions Mc n ( j ) ( x , 10 ) , Ms n + 1 ( j ) ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , j = 1 , 2 , x = 0 ( .2 ) 4 . Precision is mostly 9S.

  • 3: 27.15 Chinese Remainder Theorem
    This theorem is employed to increase efficiency in calculating with large numbers by making use of smaller numbers in most of the calculation. …Their product m has 20 digits, twice the number of digits in the data. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …
    4: Bibliography N
  • G. Nemes (2014b) The resurgence properties of the large order asymptotics of the Anger-Weber function I. J. Class. Anal. 4 (1), pp. 1–39.
  • G. Nemes (2014c) The resurgence properties of the large order asymptotics of the Anger-Weber function II. J. Class. Anal. 4 (2), pp. 121–147.
  • G. Nemes (2015b) On the large argument asymptotics of the Lommel function via Stieltjes transforms. Asymptot. Anal. 91 (3-4), pp. 265–281.
  • G. Nemes (2017b) Error Bounds for the Large-Argument Asymptotic Expansions of the Hankel and Bessel Functions. Acta Appl. Math. 150, pp. 141–177.
  • G. Nemes (2018) Error bounds for the large-argument asymptotic expansions of the Lommel and allied functions. Stud. Appl. Math. 140 (4), pp. 508–541.
  • 5: 12.11 Zeros
    §12.11(ii) Asymptotic Expansions of Large Zeros
    When a > 1 2 the zeros are asymptotically given by z a , s and z a , s ¯ , where s is a large positive integer and …
    §12.11(iii) Asymptotic Expansions for Large Parameter
    For large negative values of a the real zeros of U ( a , x ) , U ( a , x ) , V ( a , x ) , and V ( a , x ) can be approximated by reversion of the Airy-type asymptotic expansions of §§12.10(vii) and 12.10(viii). …
    12.11.9 u a , 1 2 1 2 μ ( 1 1.85575 708 μ 4 / 3 0.34438 34 μ 8 / 3 0.16871 5 μ 4 0.11414 μ 16 / 3 0.0808 μ 20 / 3 ) ,
    6: 28.8 Asymptotic Expansions for Large q
    §28.8 Asymptotic Expansions for Large q
    §28.8(ii) Sips’ Expansions
    §28.8(iii) Goldstein’s Expansions
    Barrett’s Expansions
    7: Bibliography O
  • A. B. Olde Daalhuis (2003a) Uniform asymptotic expansions for hypergeometric functions with large parameters. I. Analysis and Applications (Singapore) 1 (1), pp. 111–120.
  • A. B. Olde Daalhuis (2003b) Uniform asymptotic expansions for hypergeometric functions with large parameters. II. Analysis and Applications (Singapore) 1 (1), pp. 121–128.
  • A. B. Olde Daalhuis (2010) Uniform asymptotic expansions for hypergeometric functions with large parameters. III. Analysis and Applications (Singapore) 8 (2), pp. 199–210.
  • F. W. J. Olver (1952) Some new asymptotic expansions for Bessel functions of large orders. Proc. Cambridge Philos. Soc. 48 (3), pp. 414–427.
  • F. W. J. Olver (1962) Tables for Bessel Functions of Moderate or Large Orders. National Physical Laboratory Mathematical Tables, Vol. 6. Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
  • 8: 16.22 Asymptotic Expansions
    Asymptotic expansions of G p , q m , n ( z ; 𝐚 ; 𝐛 ) for large z are given in Luke (1969a, §§5.7 and 5.10) and Luke (1975, §5.9). For asymptotic expansions of Meijer G -functions with large parameters see Fields (1973, 1983).
    9: 30.9 Asymptotic Approximations and Expansions
    §30.9(i) Prolate Spheroidal Wave Functions
    2 20 β 5 = 527 q 7 61529 q 5 10 43961 q 3 22 41599 q + 32 m 2 ( 5739 q 5 + 1 27550 q 3 + 2 98951 q ) 2048 m 4 ( 355 q 3 + 1505 q ) + 65536 m 6 q .
    The cases of large m , and of large m and large | γ | , are studied in Abramowitz (1949). …The behavior of λ n m ( γ 2 ) for complex γ 2 and large | λ n m ( γ 2 ) | is investigated in Hunter and Guerrieri (1982).
    10: Staff
  • Ronald F. Boisvert, Editor at Large, NIST

  • William P. Reinhardt, University of Washington, Chaps. 20, 22, 23

  • Peter L. Walker, American University of Sharjah, Chaps. 20, 22, 23

  • William P. Reinhardt, University of Washington, for Chaps. 20, 22, 23

  • Peter L. Walker, American University of Sharjah, for Chaps. 20, 22, 23