About the Project
NIST

large variable

AdvancedHelp

(0.002 seconds)

1—10 of 102 matching pages

1: 12.16 Mathematical Applications
2: 12.9 Asymptotic Expansions for Large Variable
§12.9 Asymptotic Expansions for Large Variable
§12.9(ii) Bounds and Re-Expansions for the Remainder Terms
3: 8.20 Asymptotic Expansions of E p ( z )
§8.20(i) Large z
4: 8.11 Asymptotic Approximations and Expansions
§8.11 Asymptotic Approximations and Expansions
5: 15.12 Asymptotic Approximations
§15.12(i) Large Variable
6: 12.11 Zeros
§12.11(ii) Asymptotic Expansions of Large Zeros
7: 16.11 Asymptotic Expansions
§16.11(ii) Expansions for Large Variable
16.11.10 F p p + 1 ( a 1 + r , , a k - 1 + r , a k , , a p + 1 b 1 + r , , b k + r , b k + 1 , , b p ; z ) = n = 0 m - 1 ( a 1 + r ) n ( a k - 1 + r ) n ( a k ) n ( a p + 1 ) n ( b 1 + r ) n ( b k + r ) n ( b k + 1 ) n ( b p ) n z n n ! + O ( 1 r m ) ,
8: 12.14 The Function W ( a , x )
§12.14(viii) Asymptotic Expansions for Large Variable
§12.14(xi) Zeros of W ( a , x ) , W ( a , x )
9: Bibliography F
  • C. Ferreira, J. L. López, and E. Pérez Sinusía (2013a) The third Appell function for one large variable. J. Approx. Theory 165, pp. 60–69.
  • C. Ferreira, J. L. López, and E. Pérez Sinusía (2005) Incomplete gamma functions for large values of their variables. Adv. in Appl. Math. 34 (3), pp. 467–485.
  • C. Ferreira, J. L. López, and E. P. Sinusía (2013b) The second Appell function for one large variable. Mediterr. J. Math. 10 (4), pp. 1853–1865.
  • 10: 8.21 Generalized Sine and Cosine Integrals
    §8.21(viii) Asymptotic Expansions