About the Project

kernel equations

AdvancedHelp

(0.001 seconds)

1—10 of 31 matching pages

1: 31.10 Integral Equations and Representations
β–Ίand the kernel 𝒦 ⁑ ( z , t ) is a solution of the partial differential equationβ–Ί
Kernel Functions
β–Ίand the kernel 𝒦 ⁑ ( z ; s , t ) is a solution of the partial differential equationβ–Ί
Kernel Functions
β–Ίleads to the kernel equation
2: 28.10 Integral Equations
β–Ί
§28.10(i) Equations with Elementary Kernels
β–Ί
§28.10(ii) Equations with Bessel-Function Kernels
3: 10.67 Asymptotic Expansions for Large Argument
β–Ί
10.67.1 ker Ξ½ ⁑ x e x / 2 ⁒ ( Ο€ 2 ⁒ x ) 1 2 ⁒ k = 0 a k ⁑ ( Ξ½ ) x k ⁒ cos ⁑ ( x 2 + ( Ξ½ 2 + k 4 + 1 8 ) ⁒ Ο€ ) ,
β–Ί
10.67.13 ker 2 ⁑ x + kei 2 ⁑ x Ο€ 2 ⁒ x ⁒ e x ⁒ 2 ⁒ ( 1 1 4 ⁒ 2 ⁒ 1 x + 1 64 ⁒ 1 x 2 + 33 256 ⁒ 2 ⁒ 1 x 3 1797 8192 ⁒ 1 x 4 + β‹― ) ,
β–Ί
10.67.14 ker ⁑ x ⁒ kei ⁑ x ker ⁑ x ⁒ kei ⁑ x Ο€ 2 ⁒ x ⁒ e x ⁒ 2 ⁒ ( 1 2 1 8 ⁒ 1 x + 9 64 ⁒ 2 ⁒ 1 x 2 39 512 ⁒ 1 x 3 + 75 8192 ⁒ 2 ⁒ 1 x 4 + β‹― ) ,
β–Ί
10.67.15 ker ⁑ x ⁒ ker ⁑ x + kei ⁑ x ⁒ kei ⁑ x Ο€ 2 ⁒ x ⁒ e x ⁒ 2 ⁒ ( 1 2 + 3 8 ⁒ 1 x 15 64 ⁒ 2 ⁒ 1 x 2 + 45 512 ⁒ 1 x 3 + 315 8192 ⁒ 2 ⁒ 1 x 4 + β‹― ) ,
β–Ί
10.67.16 ( ker ⁑ x ) 2 + ( kei ⁑ x ) 2 Ο€ 2 ⁒ x ⁒ e x ⁒ 2 ⁒ ( 1 + 3 4 ⁒ 2 ⁒ 1 x + 9 64 ⁒ 1 x 2 75 256 ⁒ 2 ⁒ 1 x 3 + 2475 8192 ⁒ 1 x 4 + β‹― ) .
4: 10.69 Uniform Asymptotic Expansions for Large Order
β–Ί
10.69.3 ker Ξ½ ⁑ ( Ξ½ ⁒ x ) + i ⁒ kei Ξ½ ⁑ ( Ξ½ ⁒ x ) e Ξ½ ⁒ ΞΎ ⁒ ( Ο€ 2 ⁒ Ξ½ ⁒ ΞΎ ) 1 / 2 ⁒ ( x ⁒ e 3 ⁒ Ο€ ⁒ i / 4 1 + ΞΎ ) Ξ½ ⁒ k = 0 ( 1 ) k ⁒ U k ⁑ ( ΞΎ 1 ) Ξ½ k ,
β–Ί
10.69.5 ker Ξ½ ⁑ ( Ξ½ ⁒ x ) + i ⁒ kei Ξ½ ⁑ ( Ξ½ ⁒ x ) e Ξ½ ⁒ ΞΎ x ⁒ ( Ο€ ⁒ ΞΎ 2 ⁒ Ξ½ ) 1 / 2 ⁒ ( x ⁒ e 3 ⁒ Ο€ ⁒ i / 4 1 + ΞΎ ) Ξ½ ⁒ k = 0 ( 1 ) k ⁒ V k ⁑ ( ΞΎ 1 ) Ξ½ k ,
5: 28.28 Integrals, Integral Representations, and Integral Equations
β–Ί
§28.28(i) Equations with Elementary Kernels
6: 10.61 Definitions and Basic Properties
β–Ί
10.61.2 ker Ξ½ ⁑ x + i ⁒ kei Ξ½ ⁑ x = e Ξ½ ⁒ Ο€ ⁒ i / 2 ⁒ K Ξ½ ⁑ ( x ⁒ e Ο€ ⁒ i / 4 ) = 1 2 ⁒ Ο€ ⁒ i ⁒ H Ξ½ ( 1 ) ⁑ ( x ⁒ e 3 ⁒ Ο€ ⁒ i / 4 ) = 1 2 ⁒ Ο€ ⁒ i ⁒ e Ξ½ ⁒ Ο€ ⁒ i ⁒ H Ξ½ ( 2 ) ⁑ ( x ⁒ e Ο€ ⁒ i / 4 ) .
β–Ί
10.61.3 x 2 ⁒ d 2 w d x 2 + x ⁒ d w d x ( i ⁒ x 2 + ν 2 ) ⁒ w = 0 , w = ber ν ⁑ x + i ⁒ bei ν ⁑ x , ber ν ⁑ x + i ⁒ bei ν ⁑ x ker ν ⁑ x + i ⁒ kei ν ⁑ x , ker ν ⁑ x + i ⁒ kei ν ⁑ x .
β–Ί
10.61.4 x 4 ⁒ d 4 w d x 4 + 2 ⁒ x 3 ⁒ d 3 w d x 3 ( 1 + 2 ⁒ Ξ½ 2 ) ⁒ ( x 2 ⁒ d 2 w d x 2 x ⁒ d w d x ) + ( Ξ½ 4 4 ⁒ Ξ½ 2 + x 4 ) ⁒ w = 0 , w = ber ± Ξ½ ⁑ x , bei ± Ξ½ ⁑ x , ker ± Ξ½ ⁑ x , kei ± Ξ½ ⁑ x .
β–Ί
10.61.11 ker 1 2 ⁑ ( x ⁒ 2 ) = kei 1 2 ⁑ ( x ⁒ 2 ) = 2 3 4 ⁒ Ο€ x ⁒ e x ⁒ sin ⁑ ( x Ο€ 8 ) ,
β–Ί
10.61.12 kei 1 2 ⁑ ( x ⁒ 2 ) = ker 1 2 ⁑ ( x ⁒ 2 ) = 2 3 4 ⁒ Ο€ x ⁒ e x ⁒ cos ⁑ ( x Ο€ 8 ) .
7: 10.65 Power Series
β–Ί
10.65.3 ker n ⁑ x = 1 2 ⁒ ( 1 2 ⁒ x ) n ⁒ k = 0 n 1 ( n k 1 ) ! k ! ⁒ cos ⁑ ( 3 4 ⁒ n ⁒ Ο€ + 1 2 ⁒ k ⁒ Ο€ ) ⁒ ( 1 4 ⁒ x 2 ) k ln ⁑ ( 1 2 ⁒ x ) ⁒ ber n ⁑ x + 1 4 ⁒ Ο€ ⁒ bei n ⁑ x + 1 2 ⁒ ( 1 2 ⁒ x ) n ⁒ k = 0 ψ ⁑ ( k + 1 ) + ψ ⁑ ( n + k + 1 ) k ! ⁒ ( n + k ) ! ⁒ cos ⁑ ( 3 4 ⁒ n ⁒ Ο€ + 1 2 ⁒ k ⁒ Ο€ ) ⁒ ( 1 4 ⁒ x 2 ) k ,
8: 1.15 Summability Methods
β–Ί
1.15.12 P ⁑ ( r , θ ) = 1 r 2 1 2 ⁒ r ⁒ cos ⁑ θ + r 2 = n = r | n | ⁒ e i ⁒ n ⁒ θ , 0 r < 1 ,
β–Ί
1.15.14 P ⁑ ( r , θ ) 0 ,
β–Ί
1.15.15 K n ⁑ ( θ ) = 1 n + 1 ⁒ ( sin ⁑ ( 1 2 ⁒ ( n + 1 ) ⁒ θ ) sin ⁑ ( 1 2 ⁒ θ ) ) 2 ,
β–Ί
1.15.17 K n ⁑ ( θ ) 0 ,
β–Ί
1.15.42 K R ⁑ ( s ) ⁒ d s = 1 .
9: 10.68 Modulus and Phase Functions
β–Ί β–ΊEquations (10.68.8)–(10.68.14) also hold with the symbols ber , bei , M , and ΞΈ replaced throughout by ker , kei , N , and Ο• , respectively. …
10: 18.2 General Orthogonal Polynomials
β–Ί
18.2.12 K n ⁒ ( x , y ) β„“ = 0 n p β„“ ⁑ ( x ) ⁒ p β„“ ⁑ ( y ) h β„“ = k n h n ⁒ k n + 1 ⁒ p n + 1 ⁑ ( x ) ⁒ p n ⁑ ( y ) p n ⁑ ( x ) ⁒ p n + 1 ⁑ ( y ) x y , x y ,
β–Ί
18.2.13 K n ⁒ ( x , x ) = β„“ = 0 n ( p β„“ ⁑ ( x ) ) 2 h β„“ = k n h n ⁒ k n + 1 ⁒ ( p n + 1 ⁑ ( x ) ⁒ p n ⁑ ( x ) p n ⁑ ( x ) ⁒ p n + 1 ⁑ ( x ) ) .