k
(0.001 seconds)
1—10 of 458 matching pages
1: 22.6 Elementary Identities
2: 19.4 Derivatives and Differential Equations
…
►
…
►Let .
Then
…If , then these two equations become hypergeometric differential equations (15.10.1) for and .
An analogous differential equation of third order for is given in Byrd and Friedman (1971, 118.03).
3: 22.21 Tables
…
►Spenceley and Spenceley (1947) tabulates , , , , for and to 12D, or 12 decimals of a radian in the case of .
►Curtis (1964b) tabulates , , for , , and (not ) to 20D.
►Lawden (1989, pp. 280–284 and 293–297) tabulates , , , , to 5D for , , where ranges from 1.
…
►Zhang and Jin (1996, p. 678) tabulates , , for and to 7D.
…
4: 22.17 Moduli Outside the Interval [0,1]
…
►
…
►In terms of the coefficients of the power series of §22.10(i), the above equations are polynomial identities in .
…
►When is fixed each of the twelve Jacobian elliptic functions is a meromorphic function of .
…In consequence, the formulas in this chapter remain valid when is complex.
In particular, the Landen transformations in §§22.7(i) and 22.7(ii) are valid for all complex values of , irrespective of which values of and are chosen—as long as they are used consistently.
…
5: 22.7 Landen Transformations
6: 22.13 Derivatives and Differential Equations
…
►(The modulus is suppressed throughout the table.)
…
►
22.13.2
…
►
22.13.14
…
►
22.13.17
…
►
22.13.20
…
7: 22.5 Special Values
…
►For example, at , , .
(The modulus is suppressed throughout the table.)
…
►Table 22.5.2 gives , , for other special values of .
…
►
§22.5(ii) Limiting Values of
… ►Expansions for as or are given in §§19.5, 19.12. …8: 22.16 Related Functions
…
►
is an infinitely differentiable function of .
…
►
Approximations for Small ,
… ►In Equations (22.16.21)–(22.16.23), … ►In Equations (22.16.24)–(22.16.26), . … ►For see §19.2(ii). …9: 26.1 Special Notation
…
►
►
…
►
►
…
►Other notations for , the Stirling numbers of the first kind, include (Abramowitz and Stegun (1964, Chapter 24), Fort (1948)), (Jordan (1939), Moser and Wyman (1958a)), (Milne-Thomson (1933)), (Carlitz (1960), Gould (1960)), (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)).
►Other notations for , the Stirling numbers of the second kind, include (Fort (1948)), (Jordan (1939)), (Moser and Wyman (1958b)), (Milne-Thomson (1933)), (Carlitz (1960), Gould (1960)), (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)), and also an unconventional symbol in Abramowitz and Stegun (1964, Chapter 24).
real variable. | |
… | |
divides . | |
greatest common divisor of positive integers and . |
binomial coefficient. | |
… | |
number of partitions of into at most parts. | |
… |