About the Project

irregular singularity

AdvancedHelp

(0.002 seconds)

11—20 of 20 matching pages

11: 13.2 Definitions and Basic Properties
This equation has a regular singularity at the origin with indices 0 and 1 b , and an irregular singularity at infinity of rank one. …In effect, the regular singularities of the hypergeometric differential equation at b and coalesce into an irregular singularity at . …
12: Bibliography D
  • T. M. Dunster (1996c) Error bounds for exponentially improved asymptotic solutions of ordinary differential equations having irregular singularities of rank one. Methods Appl. Anal. 3 (1), pp. 109–134.
  • 13: 33.2 Definitions and Basic Properties
    §33.2(i) Coulomb Wave Equation
    This differential equation has a regular singularity at ρ = 0 with indices + 1 and , and an irregular singularity of rank 1 at ρ = (§§2.7(i), 2.7(ii)). …
    14: 33.14 Definitions and Basic Properties
    §33.14(i) Coulomb Wave Equation
    Again, there is a regular singularity at r = 0 with indices + 1 and , and an irregular singularity of rank 1 at r = . …
    15: 10.47 Definitions and Basic Properties
    Equations (10.47.1) and (10.47.2) each have a regular singularity at z = 0 with indices n , n 1 , and an irregular singularity at z = of rank 1 ; compare §§2.7(i)2.7(ii). …
    16: 13.14 Definitions and Basic Properties
    It has a regular singularity at the origin with indices 1 2 ± μ , and an irregular singularity at infinity of rank one. …
    17: 28.2 Definitions and Basic Properties
    This equation has regular singularities at 0 and 1, both with exponents 0 and 1 2 , and an irregular singular point at . …
    18: Bibliography E
  • A. Erdélyi (1942b) The Fuchsian equation of second order with four singularities. Duke Math. J. 9 (1), pp. 48–58.
  • R. Ernvall (1979) Generalized Bernoulli numbers, generalized irregular primes, and class number. Ann. Univ. Turku. Ser. A I 178, pp. 1–72.
  • 19: Bibliography
  • M. Abramowitz (1954) Regular and irregular Coulomb wave functions expressed in terms of Bessel-Clifford functions. J. Math. Physics 33, pp. 111–116.
  • A. R. Ahmadi and S. E. Widnall (1985) Unsteady lifting-line theory as a singular-perturbation problem. J. Fluid Mech 153, pp. 59–81.
  • H. H. Aly, H. J. W. Müller-Kirsten, and N. Vahedi-Faridi (1975) Scattering by singular potentials with a perturbation – Theoretical introduction to Mathieu functions. J. Mathematical Phys. 16, pp. 961–970.
  • V. I. Arnol’d, S. M. Guseĭn-Zade, and A. N. Varchenko (1988) Singularities of Differentiable Maps. Vol. II. Birkhäuser, Boston-Berlin.
  • J. Avron and B. Simon (1982) Singular Continuous Spectrum for a Class of Almost Periodic Jacobi Matrices. Bulletin of the American Mathematical Society 6 (1), pp. 81–85.
  • 20: 18.39 Applications in the Physical Sciences
    See accompanying text
    Figure 18.39.2: Coulomb–Pollaczek weight functions, x [ 1 , 1 ] , (18.39.50) for s = 10 , l = 0 , and Z = ± 1 . For Z = + 1 the weight function, red curve, has an essential singularity at x = 1 , as all derivatives vanish as x 1 + ; the green curve is 1 x w CP ( y ) d y , to be compared with its histogram approximation in §18.40(ii). For Z = 1 the weight function, blue curve, is non-zero at x = 1 , but this point is also an essential singularity as the discrete parts of the weight function of (18.39.51) accumulate as k , x k 1 . Magnify
    The Schrödinger operator essential singularity, seen in the accumulation of discrete eigenvalues for the attractive Coulomb problem, is mirrored in the accumulation of jumps in the discrete Pollaczek–Stieltjes measure as x 1 . … See Yamani and Fishman (1975) for L 2 for expansions of both the regular and irregular spherical Bessel functions, which are the Pollaczeks with a = Z = 0 , and Coulomb functions for fixed l , Broad and Reinhardt (1976) for a many particle example, and the overview of Alhaidari et al. (2008). …