About the Project

inversion%20numbers

AdvancedHelp

(0.002 seconds)

1—10 of 11 matching pages

1: 26.14 Permutations: Order Notation
β–ΊAs an example, 35247816 is an element of 𝔖 8 . The inversion number is the number of pairs of elements for which the larger element precedes the smaller: … β–Ί β–ΊThe Eulerian number, denoted ⟨ n k ⟩ , is the number of permutations in 𝔖 n with exactly k descents. …The Eulerian number ⟨ n k ⟩ is equal to the number of permutations in 𝔖 n with exactly k excedances. … β–Ί
§26.14(iii) Identities
2: 26.13 Permutations: Cycle Notation
β–ΊThe Stirling cycle numbers of the first kind, denoted by [ n k ] , count the number of permutations of { 1 , 2 , , n } with exactly k cycles. They are related to Stirling numbers of the first kind by …See §26.8 for generating functions, recurrence relations, identities, and asymptotic approximations. … β–ΊThe derangement number, d ⁑ ( n ) , is the number of elements of 𝔖 n with no fixed points: … β–ΊGiven a permutation Οƒ 𝔖 n , the inversion number of Οƒ , denoted inv ( Οƒ ) , is the least number of adjacent transpositions required to represent Οƒ . …
3: Bibliography I
β–Ί
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • β–Ί
  • Inverse Symbolic Calculator (website) Centre for Experimental and Constructive Mathematics, Simon Fraser University, Canada.
  • β–Ί
  • K. Ireland and M. Rosen (1990) A Classical Introduction to Modern Number Theory. 2nd edition, Springer-Verlag, New York.
  • 4: Bibliography R
    β–Ί
  • S. Ramanujan (1927) Some properties of Bernoulli’s numbers (J. Indian Math. Soc. 3 (1911), 219–234.). In Collected Papers,
  • β–Ί
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • β–Ί
  • I. S. Reed, D. W. Tufts, X. Yu, T. K. Truong, M. T. Shih, and X. Yin (1990) Fourier analysis and signal processing by use of the Möbius inversion formula. IEEE Trans. Acoustics, Speech, Signal Processing 38, pp. 458–470.
  • β–Ί
  • W. P. Reinhardt (2018) Universality properties of Gaussian quadrature, the derivative rule, and a novel approach to Stieltjes inversion.
  • β–Ί
  • K. H. Rosen (2004) Elementary Number Theory and its Applications. 5th edition, Addison-Wesley, Reading, MA.
  • 5: Bibliography K
    β–Ί
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • β–Ί
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • β–Ί
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • β–Ί
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • β–Ί
  • V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin (1993) Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge.
  • 6: Bibliography C
    β–Ί
  • L. Carlitz (1963) The inverse of the error function. Pacific J. Math. 13 (2), pp. 459–470.
  • β–Ί
  • B. C. Carlson (2008) Power series for inverse Jacobian elliptic functions. Math. Comp. 77 (263), pp. 1615–1621.
  • β–Ί
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • β–Ί
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • β–Ί
  • D. Colton and R. Kress (1998) Inverse Acoustic and Electromagnetic Scattering Theory. 2nd edition, Applied Mathematical Sciences, Vol. 93, Springer-Verlag, Berlin.
  • 7: Bibliography
    β–Ί
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • β–Ί
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • β–Ί
  • A. Adelberg (1996) Congruences of p -adic integer order Bernoulli numbers. J. Number Theory 59 (2), pp. 374–388.
  • β–Ί
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • β–Ί
  • T. M. Apostol (2000) A Centennial History of the Prime Number Theorem. In Number Theory, Trends Math., pp. 1–14.
  • 8: Bibliography W
    β–Ί
  • E. L. Wachspress (2000) Evaluating elliptic functions and their inverses. Comput. Math. Appl. 39 (3-4), pp. 131–136.
  • β–Ί
  • S. S. Wagstaff (2002) Prime Divisors of the Bernoulli and Euler Numbers. In Number Theory for the Millennium, III (Urbana, IL, 2000), pp. 357–374.
  • β–Ί
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • β–Ί
  • G. N. Watson (1935a) Generating functions of class-numbers. Compositio Math. 1, pp. 39–68.
  • 9: Bibliography B
    β–Ί
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • β–Ί
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • β–Ί
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • β–Ί
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • β–Ί
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • 10: 25.5 Integral Representations
    β–Ί
    25.5.7 ΞΆ ⁑ ( s ) = 1 2 + 1 s 1 + m = 1 n B 2 ⁒ m ( 2 ⁒ m ) ! ⁒ ( s ) 2 ⁒ m 1 + 1 Ξ“ ⁑ ( s ) ⁒ 0 ( 1 e x 1 1 x + 1 2 m = 1 n B 2 ⁒ m ( 2 ⁒ m ) ! ⁒ x 2 ⁒ m 1 ) ⁒ x s 1 e x ⁒ d x , ⁑ s > ( 2 ⁒ n + 1 ) , n = 1 , 2 , 3 , .
    β–Ί
    25.5.10 ΞΆ ⁑ ( s ) = 2 s 1 1 2 1 s ⁒ 0 cos ⁑ ( s ⁒ arctan ⁑ x ) ( 1 + x 2 ) s / 2 ⁒ cosh ⁑ ( 1 2 ⁒ Ο€ ⁒ x ) ⁒ d x .
    β–Ί
    25.5.11 ΞΆ ⁑ ( s ) = 1 2 + 1 s 1 + 2 ⁒ 0 sin ⁑ ( s ⁒ arctan ⁑ x ) ( 1 + x 2 ) s / 2 ⁒ ( e 2 ⁒ Ο€ ⁒ x 1 ) ⁒ d x .
    β–Ί
    25.5.12 ΞΆ ⁑ ( s ) = 2 s 1 s 1 2 s ⁒ 0 sin ⁑ ( s ⁒ arctan ⁑ x ) ( 1 + x 2 ) s / 2 ⁒ ( e Ο€ ⁒ x + 1 ) ⁒ d x .