About the Project

inverse function

AdvancedHelp

(0.008 seconds)

21—30 of 161 matching pages

21: 4.38 Inverse Hyperbolic Functions: Further Properties
§4.38 Inverse Hyperbolic Functions: Further Properties
§4.38(i) Power Series
§4.38(ii) Derivatives
§4.38(iii) Addition Formulas
4.38.19 Arctanh u ± Arccoth v = Arctanh ( u v ± 1 v ± u ) = Arccoth ( v ± u u v ± 1 ) .
22: 1.10 Functions of a Complex Variable
§1.10(vii) Inverse Functions
Lagrange Inversion Theorem
1.10.13 F ( w ) = z 0 + n = 1 F n ( w w 0 ) n
1.10.14 g ( F ( w ) ) = g ( z 0 ) + n = 1 G n ( w w 0 ) n ,
Extended Inversion Theorem
23: 4.40 Integrals
§4.40 Integrals
§4.40(iv) Inverse Hyperbolic Functions
4.40.11 arcsinh x d x = x arcsinh x ( 1 + x 2 ) 1 / 2 .
4.40.14 arccsch x d x = x arccsch x + arcsinh x , 0 < x < ,
4.40.15 arcsech x d x = x arcsech x + arcsin x , 0 < x < 1 ,
24: 19.6 Special Cases
For the inverse Gudermannian function gd 1 ( ϕ ) see §4.23(viii). …
25: 4.25 Continued Fractions
§4.25 Continued Fractions
4.25.3 arcsin z 1 z 2 = z 1 1 2 z 2 3 1 2 z 2 5 3 4 z 2 7 3 4 z 2 9 ,
4.25.4 arctan z = z 1 + z 2 3 + 4 z 2 5 + 9 z 2 7 + 16 z 2 9 + ,
4.25.5 e 2 a arctan ( 1 / z ) = 1 + 2 a z a + a 2 + 1 3 z + a 2 + 4 5 z + a 2 + 9 7 z + ,
See Lorentzen and Waadeland (1992, pp. 560–571) for other continued fractions involving inverse trigonometric functions. …
26: 22.20 Methods of Computation
22.20.4 ϕ n 1 = 1 2 ( ϕ n + arcsin ( c n a n sin ϕ n ) ) ,
§22.20(v) Inverse Functions
27: 4.26 Integrals
4.26.5 sec x d x = gd 1 ( x ) , 1 2 π < x < 1 2 π .
§4.26(iv) Inverse Trigonometric Functions
4.26.14 arcsin x d x = x arcsin x + ( 1 x 2 ) 1 / 2 , 1 < x < 1 ,
4.26.15 arccos x d x = x arccos x ( 1 x 2 ) 1 / 2 , 1 < x < 1 .
Extensive compendia of indefinite and definite integrals of trigonometric and inverse trigonometric functions include Apelblat (1983, pp. 48–109), Bierens de Haan (1939), Gradshteyn and Ryzhik (2000, Chapters 2–4), Gröbner and Hofreiter (1949, pp. 116–139), Gröbner and Hofreiter (1950, pp. 94–160), and Prudnikov et al. (1986a, §§1.5, 1.7, 2.5, 2.7).
28: 19.2 Definitions
In (19.2.18)–(19.2.22) the inverse trigonometric and hyperbolic functions assume their principal values (§§4.23(ii) and 4.37(ii)). When x and y are positive, R C ( x , y ) is an inverse circular function if x < y and an inverse hyperbolic function (or logarithm) if x > y :
19.2.18 R C ( x , y ) = 1 y x arctan y x x = 1 y x arccos x / y , 0 x < y ,
19.2.19 R C ( x , y ) = 1 x y arctanh x y x = 1 x y ln x + x y y , 0 < y < x .
19.2.20 R C ( x , y ) = x x y R C ( x y , y ) = 1 x y arctanh x x y = 1 x y ln x + x y y , y < 0 x .
29: 19.11 Addition Theorems
19.11.6_5 R C ( γ δ , γ ) = 1 δ arctan ( δ sin θ sin ϕ sin ψ α 2 1 α 2 cos θ cos ϕ cos ψ ) .
30: 28.26 Asymptotic Approximations for Large q
28.26.3 ϕ = 2 h sinh z ( m + 1 2 ) arctan ( sinh z ) .