About the Project

inverse linear

AdvancedHelp

(0.001 seconds)

1—10 of 15 matching pages

1: 3.8 Nonlinear Equations
Regula Falsi
Inverse linear interpolation (§3.3(v)) is used to obtain the first approximation: …
2: Mark J. Ablowitz
for appropriate data they can be linearized by the Inverse Scattering Transform (IST) and they possess solitons as special solutions. …
3: 31.16 Mathematical Applications
 thesis “Inversion problem for a second-order linear differential equation with four singular points”. …
4: Bibliography
  • M. J. Ablowitz and P. A. Clarkson (1991) Solitons, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society Lecture Note Series, Vol. 149, Cambridge University Press, Cambridge.
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • M. J. Ablowitz and H. Segur (1981) Solitons and the Inverse Scattering Transform. SIAM Studies in Applied Mathematics, Vol. 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • 5: Bibliography O
  • A. B. Olde Daalhuis and F. W. J. Olver (1995a) Hyperasymptotic solutions of second-order linear differential equations. I. Methods Appl. Anal. 2 (2), pp. 173–197.
  • A. B. Olde Daalhuis and F. W. J. Olver (1995b) On the calculation of Stokes multipliers for linear differential equations of the second order. Methods Appl. Anal. 2 (3), pp. 348–367.
  • A. B. Olde Daalhuis and F. W. J. Olver (1998) On the asymptotic and numerical solution of linear ordinary differential equations. SIAM Rev. 40 (3), pp. 463–495.
  • A. B. Olde Daalhuis (1995) Hyperasymptotic solutions of second-order linear differential equations. II. Methods Appl. Anal. 2 (2), pp. 198–211.
  • A. B. Olde Daalhuis (1998a) Hyperasymptotic solutions of higher order linear differential equations with a singularity of rank one. Proc. Roy. Soc. London Ser. A 454, pp. 1–29.
  • 6: Bibliography J
  • D. J. Jeffrey, R. M. Corless, D. E. G. Hare, and D. E. Knuth (1995) Sur l’inversion de y α e y au moyen des nombres de Stirling associés. C. R. Acad. Sci. Paris Sér. I Math. 320 (12), pp. 1449–1452.
  • M. Jimbo and T. Miwa (1981) Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D 2 (3), pp. 407–448.
  • 7: 19.2 Definitions
    Bulirsch’s integrals are linear combinations of Legendre’s integrals that are chosen to facilitate computational application of Bartky’s transformation (Bartky (1938)). … In (19.2.18)–(19.2.22) the inverse trigonometric and hyperbolic functions assume their principal values (§§4.23(ii) and 4.37(ii)). When x and y are positive, R C ( x , y ) is an inverse circular function if x < y and an inverse hyperbolic function (or logarithm) if x > y :
    19.2.18 R C ( x , y ) = 1 y x arctan y x x = 1 y x arccos x / y , 0 x < y ,
    19.2.19 R C ( x , y ) = 1 x y arctanh x y x = 1 x y ln x + x y y , 0 < y < x .
    8: 15.12 Asymptotic Approximations
  • (d)

    z > 1 2 and α 1 2 π + δ ph c α + + 1 2 π δ , where

    15.12.1 α ± = arctan ( ph z ph ( 1 z ) π ln | 1 z 1 | ) ,

    with z restricted so that ± α ± [ 0 , 1 2 π ) .

  • 15.12.6 ζ = arccosh z .
    15.12.10 ζ = arccosh ( 1 4 z 1 ) ,
    By combination of the foregoing results of this subsection with the linear transformations of §15.8(i) and the connection formulas of §15.10(ii), similar asymptotic approximations for F ( a + e 1 λ , b + e 2 λ ; c + e 3 λ ; z ) can be obtained with e j = ± 1 or 0 , j = 1 , 2 , 3 . …
    9: 24.5 Recurrence Relations
    §24.5 Recurrence Relations
    §24.5(iii) Inversion Formulas
    10: Bibliography K
  • A. A. Kapaev (2004) Quasi-linear Stokes phenomenon for the Painlevé first equation. J. Phys. A 37 (46), pp. 11149–11167.
  • E. H. Kaufman and T. D. Lenker (1986) Linear convergence and the bisection algorithm. Amer. Math. Monthly 93 (1), pp. 48–51.
  • V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin (1993) Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge.
  • J. J. Kovacic (1986) An algorithm for solving second order linear homogeneous differential equations. J. Symbolic Comput. 2 (1), pp. 3–43.
  • V. I. Krylov and N. S. Skoblya (1985) A Handbook of Methods of Approximate Fourier Transformation and Inversion of the Laplace Transformation. Mir, Moscow.