About the Project

invariants

AdvancedHelp

(0.001 seconds)

11—20 of 38 matching pages

11: 23.16 Graphics
See Figures 23.16.123.16.3 for the modular functions λ , J , and η . …
See accompanying text
Figure 23.16.1: Modular functions λ ( i y ) , J ( i y ) , η ( i y ) for 0 y 3 . … Magnify
12: 23.17 Elementary Properties
J ( i ) = 1 ,
J ( e π i / 3 ) = 0 ,
For further results for J ( τ ) see Cohen (1993, p. 376). …
23.17.5 1728 J ( τ ) = q 2 + 744 + 1 96884 q 2 + 214 93760 q 4 + ,
13: 23.11 Integral Representations
23.11.2 ( z ) = 1 z 2 + 8 0 s ( e s sinh 2 ( 1 2 z s ) f 1 ( s , τ ) + e i τ s sin 2 ( 1 2 z s ) f 2 ( s , τ ) ) d s ,
23.11.3 ζ ( z ) = 1 z + 0 ( e s ( z s sinh ( z s ) ) f 1 ( s , τ ) e i τ s ( z s sin ( z s ) ) f 2 ( s , τ ) ) d s ,
14: 23.12 Asymptotic Approximations
23.12.2 ζ ( z ) = π 2 4 ω 1 2 ( z 3 + 2 ω 1 π cot ( π z 2 ω 1 ) 8 ( z ω 1 π sin ( π z ω 1 ) ) q 2 + O ( q 4 ) ) ,
23.12.3 σ ( z ) = 2 ω 1 π exp ( π 2 z 2 24 ω 1 2 ) sin ( π z 2 ω 1 ) ( 1 ( π 2 z 2 ω 1 2 4 sin 2 ( π z 2 ω 1 ) ) q 2 + O ( q 4 ) ) ,
15: 23.18 Modular Transformations
Klein’s Complete Invariant
23.18.4 J ( 𝒜 τ ) = J ( τ ) .
J ( τ ) is a modular form of level zero for SL ( 2 , ) . …
16: 23.8 Trigonometric Series and Products
23.8.1 ( z ) + η 1 ω 1 π 2 4 ω 1 2 csc 2 ( π z 2 ω 1 ) = 2 π 2 ω 1 2 n = 1 n q 2 n 1 q 2 n cos ( n π z ω 1 ) ,
23.8.2 ζ ( z ) η 1 z ω 1 π 2 ω 1 cot ( π z 2 ω 1 ) = 2 π ω 1 n = 1 q 2 n 1 q 2 n sin ( n π z ω 1 ) .
23.8.6 σ ( z ) = 2 ω 1 π exp ( η 1 z 2 2 ω 1 ) sin ( π z 2 ω 1 ) n = 1 1 2 q 2 n cos ( π z / ω 1 ) + q 4 n ( 1 q 2 n ) 2 ,
17: 23.21 Physical Applications
The Weierstrass function plays a similar role for cubic potentials in canonical form g 3 + g 2 x 4 x 3 . …
23.21.5 ( ( v ) ( w ) ) ( ( w ) ( u ) ) ( ( u ) ( v ) ) 2 = ( ( w ) ( v ) ) 2 u 2 + ( ( u ) ( w ) ) 2 v 2 + ( ( v ) ( u ) ) 2 w 2 .
18: 23.5 Special Lattices
The Weierstrass functions take real values on the real axis iff the lattice is fixed under complex conjugation: 𝕃 = 𝕃 ¯ ; equivalently, when g 2 , g 3 . … Also, e 2 and g 3 have opposite signs unless ω 3 = i ω 1 , in which event both are zero. …
g 3 = 0 .
e 1 and g 3 have the same sign unless 2 ω 3 = ( 1 + i ) ω 1 when both are zero: the pseudo-lemniscatic case. … and the lattice roots and invariants are given by …
19: 23.6 Relations to Other Functions
23.6.36 w = z d u 4 u 3 g 2 u g 3 = 1 2 z d u ( u e 1 ) ( u e 2 ) ( u e 3 ) ,
20: 23.15 Definitions
§23.15(ii) Functions λ ( τ ) , J ( τ ) , η ( τ )
Klein’s Complete Invariant
23.15.7 J ( τ ) = ( θ 2 8 ( 0 , q ) + θ 3 8 ( 0 , q ) + θ 4 8 ( 0 , q ) ) 3 54 ( θ 1 ( 0 , q ) ) 8 ,