About the Project

interval

AdvancedHelp

(0.000 seconds)

1—10 of 256 matching pages

1: 37.8 Jacobi Polynomials Associated with Root System B C 2
the Jacobi polynomials associated with root system B C 2 are symmetric polynomials p k , n α , β , γ ( x , y ) ( 0 k n ) of the form …for all m , j with 0 j m such that m n , m + j n + k and ( j , m ) ( k , n ) . … The polynomials P k , n α , β , γ ( u , v ) , defined in terms of the polynomials p k , n α , β , γ ( x , y ) by …on the region { ( u , v ) | u | < v + 1 , u 2 > 4 v } bounded by a parabolic arc and two line segments, see Fig. … More generally, the definition of the symmetric OPs p k , n α , β , γ ( x , y ) can be extended to symmetric OPs p k , n ( x , y ) for weight function W ( x , y ) = w ( x ) w ( y ) ( x y ) 2 γ + 1 ( y < x ) for any weight function w on . …
2: 7.23 Tables
  • Abramowitz and Stegun (1964, Chapter 7) includes erf x , ( 2 / π ) e x 2 , x [ 0 , 2 ] , 10D; ( 2 / π ) e x 2 , x [ 2 , 10 ] , 8S; x e x 2 erfc x , x 2 [ 0 , 0.25 ] , 7D; 2 n Γ ( 1 2 n + 1 ) i n erfc ( x ) , n = 1 ( 1 ) 6 , 10 , 11 , x [ 0 , 5 ] , 6S; F ( x ) , x [ 0 , 2 ] , 10D; x F ( x ) , x 2 [ 0 , 0.25 ] , 9D; C ( x ) , S ( x ) , x [ 0 , 5 ] , 7D; f ( x ) , g ( x ) , x [ 0 , 1 ] , x 1 [ 0 , 1 ] , 15D.

  • Finn and Mugglestone (1965) includes the Voigt function H ( a , u ) , u [ 0 , 22 ] , a [ 0 , 1 ] , 6S.

  • Zhang and Jin (1996, pp. 638, 640–641) includes the real and imaginary parts of erf z , x [ 0 , 5 ] , y = 0.5 ( .5 ) 3 , 7D and 8D, respectively; the real and imaginary parts of x e ± i t 2 d t , ( 1 / π ) e i ( x 2 + ( π / 4 ) ) x e ± i t 2 d t , x = 0 ( .5 ) 20 ( 1 ) 25 , 8D, together with the corresponding modulus and phase to 8D and 6D (degrees), respectively.

  • 3: 37.12 Orthogonal Polynomials on Quadratic Surfaces
    where a , b { ± } , ϕ is either a linear polynomial that is nonnegative on the interval ( a , b ) , or the square root of a nonnegative polynomial on ( a , b ) of degree at most 2 . …
  • Unit sphere: ϕ ( t ) = 1 t 2 , t ( 1 , 1 ) .

  • Cylinder: ϕ ( t ) = 1 , t ( 0 , 1 ) .

  • Conic surface: ϕ ( t ) = t , t ( 0 , 1 ) .

  • Let w be a weight function on ( a , b ) . …
    4: 14.27 Zeros
    P ν μ ( x ± i 0 ) (either side of the cut) has exactly one zero in the interval ( , 1 ) if either of the following sets of conditions holds: …For all other values of the parameters P ν μ ( x ± i 0 ) has no zeros in the interval ( , 1 ) . …
    5: 26.15 Permutations: Matrix Notation
    If ( j , k ) B , then σ ( j ) k . The number of derangements of n is the number of permutations with forbidden positions B = { ( 1 , 1 ) , ( 2 , 2 ) , , ( n , n ) } . … For ( j , k ) B , B [ j , k ] denotes B after removal of all elements of the form ( j , t ) or ( t , k ) , t = 1 , 2 , , n . B ( j , k ) denotes B with the element ( j , k ) removed. … Let B = { ( j , j ) , ( j , j + 1 ) |  1 j < n } { ( n , n ) , ( n , 1 ) } . …
    6: 14.16 Zeros
    §14.16(ii) Interval 1 < x < 1
    The zeros of 𝖰 ν μ ( x ) in the interval ( 1 , 1 ) interlace those of 𝖯 ν μ ( x ) . …
    §14.16(iii) Interval 1 < x <
    P ν μ ( x ) has exactly one zero in the interval ( 1 , ) if either of the following sets of conditions holds: … 𝑸 ν μ ( x ) has no zeros in the interval ( 1 , ) when ν > 1 , and at most one zero in the interval ( 1 , ) when ν < 1 .
    7: 22.17 Moduli Outside the Interval [0,1]
    §22.17 Moduli Outside the Interval [0,1]
    Jacobian elliptic functions with real moduli in the intervals ( , 0 ) and ( 1 , ) , or with purely imaginary moduli are related to functions with moduli in the interval [ 0 , 1 ] by the following formulas. … For proofs of these results and further information see Walker (2003).
    8: 1.4 Calculus of One Variable
    Suppose f ( x ) is defined on [ a , b ] . … Then for f ( x ) continuous on ( a , b ) , … for any c , d ( a , b ) , and t [ 0 , 1 ] . …A similar definition applies to closed intervals [ a , b ] . …
    9: 37.6 Plane with Weight Function e x 2 y 2
    Then the polynomials S m , n m ( x + i y , x i y ) ( m = 0 , 1 , , n ) form an orthogonal basis of the space 𝒱 n of complex-valued orthogonal polynomials of degree n on 2 with weight function e x 2 y 2 . …
    z S m , n ( z , z ¯ ) = S m + 1 , n ( z , z ¯ ) + n S m , n 1 ( z , z ¯ ) ,
    z ¯ S m , n ( z , z ¯ ) = S m , n + 1 ( z , z ¯ ) + m S m 1 , n ( z , z ¯ ) .
    D z S m , n ( z , z ¯ ) = m S m 1 , n ( z , z ¯ ) ,
    The definition of S m , n ( z , z ¯ ) can be extended to S m , n ( z 1 , z 2 ) , where z 1 and z 2 are two independent complex variables. …
    10: 37.5 Quarter Plane with Weight Function x α y β e x y
    37.5.1 + 2 = { ( x , y ) 2 x , y > 0 }
    37.5.2 W α , β ( x , y ) = x α y β e x y , α , β > 1 .
    37.5.3 f , g α , β = 1 Γ ( α + 1 ) Γ ( β + 1 ) + 2 f ( x , y ) g ( x , y ) W α , β ( x , y ) d x d y , α , β > 1 ,
    37.5.6 Q k , n ( α , β ) , Q j , m ( α , β ) α , β = h k , n ( α , β ) δ n , m δ k , j ,
    and, for the orthogonal basis (37.5.5) of polynomials Q k , n ( α , β ) , …