About the Project

interrelation between bases

AdvancedHelp

(0.001 seconds)

1—10 of 445 matching pages

1: 31.16 Mathematical Applications
Expansions of Heun polynomial products in terms of Jacobi polynomial (§18.3) products are derived in Kalnins and Miller (1991a, b, 1993) from the viewpoint of interrelation between two bases in a Hilbert space: …
2: 6.5 Further Interrelations
§6.5 Further Interrelations
3: 7.5 Interrelations
§7.5 Interrelations
7.5.1 F ( z ) = 1 2 i π ( e z 2 w ( z ) ) = 1 2 i π e z 2 erf ( i z ) .
7.5.10 g ( z ) ± i f ( z ) = 1 2 ( 1 ± i ) e ζ 2 erfc ζ .
7.5.13 G ( x ) = π F ( x ) 1 2 e x 2 Ei ( x 2 ) , x > 0 .
4: 18.21 Hahn Class: Interrelations
§18.21 Hahn Class: Interrelations
Hahn Jacobi
Meixner Laguerre
Charlier Hermite
Meixner–Pollaczek Laguerre
5: 23.19 Interrelations
§23.19 Interrelations
6: 4.37 Inverse Hyperbolic Functions
§4.37(vi) Interrelations
Table 4.30.1 can also be used to find interrelations between inverse hyperbolic functions. …
7: 6.2 Definitions and Interrelations
§6.2 Definitions and Interrelations
6.2.1 E 1 ( z ) = z e t t d t , z 0 ,
6.2.3 Ein ( z ) = 0 z 1 e t t d t .
6.2.5 Ei ( x ) = x e t t d t = x e t t d t ,
8: 18.7 Interrelations and Limit Relations
§18.7 Interrelations and Limit Relations
§18.7(i) Linear Transformations
Legendre, Ultraspherical, and Jacobi
§18.7(ii) Quadratic Transformations
Equations (18.7.13)–(18.7.20) are special cases of (18.2.22)–(18.2.23). …
9: Tom H. Koornwinder
Koornwinder has published numerous papers on special functions, harmonic analysis, Lie groups, quantum groups, computer algebra, and their interrelations, including an interpretation of Askey–Wilson polynomials on quantum SU(2), and a five-parameter extension (the Macdonald–Koornwinder polynomials) of Macdonald’s polynomials for root systems BC. …
10: 13.2 Definitions and Basic Properties
13.2.7 U ( m , b , z ) = ( 1 ) m ( b ) m M ( m , b , z ) = ( 1 ) m s = 0 m ( m s ) ( b + s ) m s ( z ) s .
13.2.8 U ( a , a + n + 1 , z ) = ( 1 ) n ( 1 a n ) n z a + n M ( n , 1 a n , z ) = z a s = 0 n ( n s ) ( a ) s z s .
13.2.10 U ( m , n + 1 , z ) = ( 1 ) m ( n + 1 ) m M ( m , n + 1 , z ) = ( 1 ) m s = 0 m ( m s ) ( n + s + 1 ) m s ( z ) s .
Kummer’s Transformations