About the Project

integral representation of solutions

AdvancedHelp

(0.004 seconds)

11—20 of 42 matching pages

11: 32.10 Special Function Solutions
§32.10 Special Function Solutions
with solutionFor determinantal representations see Forrester and Witte (2002) and Okamoto (1987c). … which has the solution
12: Bibliography M
  • O. I. Marichev (1984) On the Representation of Meijer’s G -Function in the Vicinity of Singular Unity. In Complex Analysis and Applications ’81 (Varna, 1981), pp. 383–398.
  • P. Maroni (1995) An integral representation for the Bessel form. J. Comput. Appl. Math. 57 (1-2), pp. 251–260.
  • I. Mező (2020) An integral representation for the Lambert W function.
  • G. F. Miller (1966) On the convergence of the Chebyshev series for functions possessing a singularity in the range of representation. SIAM J. Numer. Anal. 3 (3), pp. 390–409.
  • J. C. P. Miller (1946) The Airy Integral, Giving Tables of Solutions of the Differential Equation y ′′ = x y . British Association for the Advancement of Science, Mathematical Tables Part-Vol. B, Cambridge University Press, Cambridge.
  • 13: Bibliography L
  • R. E. Langer (1934) The solutions of the Mathieu equation with a complex variable and at least one parameter large. Trans. Amer. Math. Soc. 36 (3), pp. 637–695.
  • Y. T. Li and R. Wong (2008) Integral and series representations of the Dirac delta function. Commun. Pure Appl. Anal. 7 (2), pp. 229–247.
  • J. C. Light and T. Carrington Jr. (2000) Discrete-variable representations and their utilization. In Advances in Chemical Physics, pp. 263–310.
  • J. L. López and N. M. Temme (1999b) Hermite polynomials in asymptotic representations of generalized Bernoulli, Euler, Bessel, and Buchholz polynomials. J. Math. Anal. Appl. 239 (2), pp. 457–477.
  • T. A. Lowdon (1970) Integral representation of the Hankel function in terms of parabolic cylinder functions. Quart. J. Mech. Appl. Math. 23 (3), pp. 315–327.
  • 14: 13.27 Mathematical Applications
    Confluent hypergeometric functions are connected with representations of the group of third-order triangular matrices. …Vilenkin (1968, Chapter 8) constructs irreducible representations of this group, in which the diagonal matrices correspond to operators of multiplication by an exponential function. The other group elements correspond to integral operators whose kernels can be expressed in terms of Whittaker functions. …
    15: Bibliography G
  • L. Gårding (1947) The solution of Cauchy’s problem for two totally hyperbolic linear differential equations by means of Riesz integrals. Ann. of Math. (2) 48 (4), pp. 785–826.
  • A. Gil, J. Segura, and N. M. Temme (2004c) Integral representations for computing real parabolic cylinder functions. Numer. Math. 98 (1), pp. 105–134.
  • H. W. Gould (1960) Stirling number representation problems. Proc. Amer. Math. Soc. 11 (3), pp. 447–451.
  • K. I. Gross and R. A. Kunze (1976) Bessel functions and representation theory. I. J. Functional Analysis 22 (2), pp. 73–105.
  • E. Grosswald (1985) Representations of Integers as Sums of Squares. Springer-Verlag, New York.
  • 16: Bibliography C
  • J. Chen (1966) On the representation of a large even integer as the sum of a prime and the product of at most two primes. Kexue Tongbao (Foreign Lang. Ed.) 17, pp. 385–386.
  • C. Chiccoli, S. Lorenzutta, and G. Maino (1990b) On a Tricomi series representation for the generalized exponential integral. Internat. J. Comput. Math. 31, pp. 257–262.
  • M. W. Coffey (2008) On some series representations of the Hurwitz zeta function. J. Comput. Appl. Math. 216 (1), pp. 297–305.
  • H. S. Cohl and R. S. Costas-Santos (2020) Multi-Integral Representations for Associated Legendre and Ferrers Functions. Symmetry 12 (10).
  • H. S. Cohl (2011) On parameter differentiation for integral representations of associated Legendre functions. SIGMA Symmetry Integrability Geom. Methods Appl. 7, pp. Paper 050, 16.
  • 17: 11.9 Lommel Functions
    Provided that μ ± ν 1 , 3 , 5 , , (11.9.1) has the general solutionAnother solution of (11.9.1) that is defined for all values of μ and ν is S μ , ν ( z ) , where … For uniform asymptotic expansions, for large ν and fixed μ = 1 , 0 , 1 , 2 , , of solutions of the inhomogeneous modified Bessel differential equation that corresponds to (11.9.1) see Olver (1997b, pp. 388–390). … For collections of integral representations and integrals see Apelblat (1983, §12.17), Babister (1967, p. 85), Erdélyi et al. (1954a, §§4.19 and 5.17), Gradshteyn and Ryzhik (2000, §6.86), Marichev (1983, p. 193), Oberhettinger (1972, pp. 127–128, 168–169, and 188–189), Oberhettinger (1974, §§1.12 and 2.7), Oberhettinger (1990, pp. 105–106 and 191–192), Oberhettinger and Badii (1973, §2.14), Prudnikov et al. (1990, §§1.6 and 2.9), Prudnikov et al. (1992a, §3.34), and Prudnikov et al. (1992b, §3.32).
    18: 9.11 Products
    where w 1 and w 2 are any solutions of (9.2.1). …
    §9.11(iii) Integral Representations
    For an integral representation of the Dirac delta involving a product of two Ai functions see §1.17(ii). For further integral representations see Reid (1995, 1997a, 1997b). … Let w 1 , w 2 be any solutions of (9.2.1), not necessarily distinct. …
    19: 36.11 Leading-Order Asymptotics
    §36.11 Leading-Order Asymptotics
    36.11.1 t 1 ( 𝐱 ) < t 2 ( 𝐱 ) < < t j max ( 𝐱 ) ,
    and far from the bifurcation set, the cuspoid canonical integrals are approximated by
    36.11.2 Ψ K ( 𝐱 ) = 2 π j = 1 j max ( 𝐱 ) exp ( i ( Φ K ( t j ( 𝐱 ) ; 𝐱 ) + 1 4 π ( 1 ) j + K + 1 ) ) | 2 Φ K ( t j ( 𝐱 ) ; 𝐱 ) t 2 | 1 / 2 ( 1 + o ( 1 ) ) .
    36.11.7 Ψ ( E ) ( 0 , 0 , z ) = π z ( i + 3 exp ( 4 27 i z 3 ) + o ( 1 ) ) , z ± ,
    20: 36.15 Methods of Computation
    (For the umbilics, representations as one-dimensional integrals36.2) are used.) … This can be carried out by direct numerical evaluation of canonical integrals along a finite segment of the real axis including all real critical points of Φ , with contributions from the contour outside this range approximated by the first terms of an asymptotic series associated with the endpoints. … For numerical solution of partial differential equations satisfied by the canonical integrals see Connor et al. (1983).