About the Project

integral equations and representations

AdvancedHelp

(0.005 seconds)

1—10 of 128 matching pages

1: 31.10 Integral Equations and Representations
§31.10 Integral Equations and Representations
β–Ί
Kernel Functions
β–ΊFor integral equations satisfied by the Heun polynomial 𝐻𝑝 n , m ⁑ ( z ) we have Οƒ = 1 2 Ξ΄ j , j = 0 , 1 , , n . … β–Ί
Kernel Functions
β–Ί
2: 12.18 Methods of Computation
β–ΊThese include the use of power-series expansions, recursion, integral representations, differential equations, asymptotic expansions, and expansions in series of Bessel functions. …
3: 16.25 Methods of Computation
β–ΊMethods for computing the functions of the present chapter include power series, asymptotic expansions, integral representations, differential equations, and recurrence relations. …
4: Bibliography E
β–Ί
  • J. Edwards (1954) A Treatise on the Integral Calculus. Vol. 1-2, Chelsea Publishing Co., New York.
  • β–Ί
  • G. P. Egorychev (1984) Integral Representation and the Computation of Combinatorial Sums. Translations of Mathematical Monographs, Vol. 59, American Mathematical Society, Providence, RI.
  • β–Ί
  • A. Erdélyi (1942a) Integral equations for Heun functions. Quart. J. Math., Oxford Ser. 13, pp. 107–112.
  • β–Ί
  • T. Estermann (1959) On the representations of a number as a sum of three squares. Proc. London Math. Soc. (3) 9, pp. 575–594.
  • β–Ί
  • J. A. Ewell (1990) A new series representation for ΞΆ ⁒ ( 3 ) . Amer. Math. Monthly 97 (3), pp. 219–220.
  • 5: Bibliography S
    β–Ί
  • B. I. Schneider, X. Guan, and K. Bartschat (2016) Time propagation of partial differential equations using the short iterative Lanczos method and finite-element discrete variable representation. Adv. Quantum Chem. 72, pp. 95–127.
  • β–Ί
  • R. Shail (1980) On integral representations for Lamé and other special functions. SIAM J. Math. Anal. 11 (4), pp. 702–723.
  • β–Ί
  • H. Shanker (1940a) On integral representation of Weber’s parabolic cylinder function and its expansion into an infinite series. J. Indian Math. Soc. (N. S.) 4, pp. 34–38.
  • β–Ί
  • R. Sips (1965) Représentation asymptotique de la solution générale de l’équation de Mathieu-Hill. Acad. Roy. Belg. Bull. Cl. Sci. (5) 51 (11), pp. 1415–1446.
  • β–Ί
  • B. D. Sleeman (1969) Non-linear integral equations for Heun functions. Proc. Edinburgh Math. Soc. (2) 16, pp. 281–289.
  • 6: 6.7 Integral Representations
    §6.7 Integral Representations
    β–Ί β–Ί
    §6.7(ii) Sine and Cosine Integrals
    β–Ί
    §6.7(iii) Auxiliary Functions
    β–ΊFor collections of integral representations see Bierens de Haan (1939, pp. 56–59, 72–73, 82–84, 121, 133–136, 155, 179–181, 223, 225–227, 230, 259–260, 374, 377, 397–398, 408, 416, 424, 431, 438–439, 442–444, 488, 496–500, 567–571, 585, 602, 638, 675–677), Corrington (1961), Erdélyi et al. (1954a, vol. 1, pp. 267–270), Geller and Ng (1969), Nielsen (1906b), Oberhettinger (1974, pp. 244–246), Oberhettinger and Badii (1973, pp. 364–371), and Watrasiewicz (1967).
    7: 28.28 Integrals, Integral Representations, and Integral Equations
    §28.28 Integrals, Integral Representations, and Integral Equations
    β–Ί
    §28.28(i) Equations with Elementary Kernels
    β–Ί
    28.28.23 2 Ο€ ⁒ 0 Ο€ π’ž 2 ⁒ β„“ + 2 ( j ) ⁑ ( 2 ⁒ h ⁒ R ) ⁒ sin ⁑ ( ( 2 ⁒ β„“ + 2 ) ⁒ Ο• ) ⁒ se 2 ⁒ m + 2 ⁑ ( t , h 2 ) ⁒ d t = ( 1 ) β„“ + m ⁒ B 2 ⁒ β„“ + 2 2 ⁒ m + 2 ⁑ ( h 2 ) ⁒ Ms 2 ⁒ m + 2 ( j ) ⁑ ( z , h ) .
    β–Ί
    28.28.49 Ξ± ^ n , m ( c ) = 1 2 ⁒ Ο€ ⁒ 0 2 ⁒ Ο€ cos ⁑ t ⁒ ce n ⁑ ( t , h 2 ) ⁒ ce m ⁑ ( t , h 2 ) ⁒ d t = ( 1 ) p + 1 ⁒ 2 i ⁒ Ο€ ⁒ ce n ⁑ ( 0 , h 2 ) ⁒ ce m ⁑ ( 0 , h 2 ) h ⁒ Dc 0 ⁑ ( n , m , 0 ) .
    8: 9.11 Products
    β–Ί
    §9.11(iii) Integral Representations
    β–ΊFor an integral representation of the Dirac delta involving a product of two Ai functions see §1.17(ii). β–ΊFor further integral representations see Reid (1995, 1997a, 1997b). β–Ί
    §9.11(iv) Indefinite Integrals
    β–Ί
    §9.11(v) Definite Integrals
    9: Bibliography K
    β–Ί
  • J. Kamimoto (1998) On an integral of Hardy and Littlewood. Kyushu J. Math. 52 (1), pp. 249–263.
  • β–Ί
  • A. Ya. Kazakov and S. Yu. Slavyanov (1996) Integral equations for special functions of Heun class. Methods Appl. Anal. 3 (4), pp. 447–456.
  • β–Ί
  • A. I. Kheyfits (2004) Closed-form representations of the Lambert W function. Fract. Calc. Appl. Anal. 7 (2), pp. 177–190.
  • β–Ί
  • A. V. Kitaev, C. K. Law, and J. B. McLeod (1994) Rational solutions of the fifth Painlevé equation. Differential Integral Equations 7 (3-4), pp. 967–1000.
  • β–Ί
  • T. H. Koornwinder (1994) Compact quantum groups and q -special functions. In Representations of Lie Groups and Quantum Groups, Pitman Res. Notes Math. Ser., Vol. 311, pp. 46–128.
  • 10: 7.7 Integral Representations
    β–Ί
    7.7.9 0 x erf ⁑ t ⁒ d t = x ⁒ erf ⁑ x + 1 Ο€ ⁒ ( e x 2 1 ) .