integral equation for Lam� functions
Did you mean integral equation for gam� functions ?
(0.001 seconds)
1—10 of 1020 matching pages
1: 1.14 Integral Transforms
§1.14 Integral Transforms
… ►where the last integral denotes the Cauchy principal value (1.4.25). … ►If is integrable on for all in , then the integral (1.14.32) converges and is an analytic function of in the vertical strip . … ►§1.14(viii) Compendia
►For more extensive tables of the integral transforms of this section and tables of other integral transforms, see Erdélyi et al. (1954a, b), Gradshteyn and Ryzhik (2015), Marichev (1983), Oberhettinger (1972, 1974, 1990), Oberhettinger and Badii (1973), Oberhettinger and Higgins (1961), Prudnikov et al. (1986a, b, 1990, 1992a, 1992b).2: 7.2 Definitions
…
►
§7.2(i) Error Functions
… ►§7.2(ii) Dawson’s Integral
… ►§7.2(iii) Fresnel Integrals
… ► , , and are entire functions of , as are and in the next subsection. … ►§7.2(iv) Auxiliary Functions
…3: 8.19 Generalized Exponential Integral
§8.19 Generalized Exponential Integral
►§8.19(i) Definition and Integral Representations
… ►Other Integral Representations
… ►§8.19(vi) Relation to Confluent Hypergeometric Function
… ►§8.19(x) Integrals
…4: 7.18 Repeated Integrals of the Complementary Error Function
§7.18 Repeated Integrals of the Complementary Error Function
►§7.18(i) Definition
… ►§7.18(iii) Properties
… ► … ►Hermite Polynomials
…5: 19.16 Definitions
…
►
§19.16(i) Symmetric Integrals
… ►Just as the elementary function (§19.2(iv)) is the degenerate case … ►§19.16(ii)
►All elliptic integrals of the form (19.2.3) and many multiple integrals, including (19.23.6) and (19.23.6_5), are special cases of a multivariate hypergeometric function …The -function is often used to make a unified statement of a property of several elliptic integrals. …6: 6.2 Definitions and Interrelations
…
►
§6.2(i) Exponential and Logarithmic Integrals
… ►The logarithmic integral is defined by … ►§6.2(ii) Sine and Cosine Integrals
… ► is an odd entire function. … ►§6.2(iii) Auxiliary Functions
…7: 8.21 Generalized Sine and Cosine Integrals
§8.21 Generalized Sine and Cosine Integrals
… ►§8.21(iii) Integral Representations
… ►Spherical-Bessel-Function Expansions
… ►§8.21(vii) Auxiliary Functions
… ►§8.21(viii) Asymptotic Expansions
…8: 28.2 Definitions and Basic Properties
…
►
28.2.1
…
►
§28.2(ii) Basic Solutions ,
… ►§28.2(iv) Floquet Solutions
… ►§28.2(vi) Eigenfunctions
… ►For simple roots of the corresponding equations (28.2.21) and (28.2.22), the functions are made unique by the normalizations …9: 28.20 Definitions and Basic Properties
…
►
§28.20(i) Modified Mathieu’s Equation
►When is replaced by , (28.2.1) becomes the modified Mathieu’s equation: ►
28.20.1
…
►