About the Project

integer parameters

AdvancedHelp

(0.007 seconds)

11—20 of 276 matching pages

11: 28.26 Asymptotic Approximations for Large q
28.26.1 Mc m ( 3 ) ( z , h ) = e i ϕ ( π h cosh z ) 1 / 2 ( Fc m ( z , h ) i Gc m ( z , h ) ) ,
28.26.2 i Ms m + 1 ( 3 ) ( z , h ) = e i ϕ ( π h cosh z ) 1 / 2 ( Fs m ( z , h ) i Gs m ( z , h ) ) ,
28.26.3 ϕ = 2 h sinh z ( m + 1 2 ) arctan ( sinh z ) .
28.26.4 Fc m ( z , h ) 1 + s 8 h cosh 2 z + 1 2 11 h 2 ( s 4 + 86 s 2 + 105 cosh 4 z s 4 + 22 s 2 + 57 cosh 2 z ) + 1 2 14 h 3 ( s 5 + 14 s 3 + 33 s cosh 2 z 2 s 5 + 124 s 3 + 1122 s cosh 4 z + 3 s 5 + 290 s 3 + 1627 s cosh 6 z ) + ,
28.26.5 Gc m ( z , h ) sinh z cosh 2 z ( s 2 + 3 2 5 h + 1 2 9 h 2 ( s 3 + 3 s + 4 s 3 + 44 s cosh 2 z ) + 1 2 14 h 3 ( 5 s 4 + 34 s 2 + 9 s 6 47 s 4 + 667 s 2 + 2835 12 cosh 2 z + s 6 + 505 s 4 + 12139 s 2 + 10395 12 cosh 4 z ) ) + .
12: 31.5 Solutions Analytic at Three Singularities: Heun Polynomials
31.5.1 [ 0 a γ 0 0 P 1 Q 1 R 1 0 0 P 2 Q 2 R n 1 0 0 P n Q n ] ,
31.5.2 𝐻𝑝 n , m ( a , q n , m ; n , β , γ , δ ; z ) = H ( a , q n , m ; n , β , γ , δ ; z )
13: 29.7 Asymptotic Expansions
29.7.1 a ν m ( k 2 ) p κ τ 0 τ 1 κ 1 τ 2 κ 2 ,
29.7.3 τ 0 = 1 2 3 ( 1 + k 2 ) ( 1 + p 2 ) ,
29.7.4 τ 1 = p 2 6 ( ( 1 + k 2 ) 2 ( p 2 + 3 ) 4 k 2 ( p 2 + 5 ) ) .
29.7.6 τ 2 = 1 2 10 ( 1 + k 2 ) ( 1 k 2 ) 2 ( 5 p 4 + 34 p 2 + 9 ) ,
29.7.7 τ 3 = p 2 14 ( ( 1 + k 2 ) 4 ( 33 p 4 + 410 p 2 + 405 ) 24 k 2 ( 1 + k 2 ) 2 ( 7 p 4 + 90 p 2 + 95 ) + 16 k 4 ( 9 p 4 + 130 p 2 + 173 ) ) ,
14: 28.10 Integral Equations
28.10.1 2 π 0 π / 2 cos ( 2 h cos z cos t ) ce 2 n ( t , h 2 ) d t = A 0 2 n ( h 2 ) ce 2 n ( 1 2 π , h 2 ) ce 2 n ( z , h 2 ) ,
28.10.2 2 π 0 π / 2 cosh ( 2 h sin z sin t ) ce 2 n ( t , h 2 ) d t = A 0 2 n ( h 2 ) ce 2 n ( 0 , h 2 ) ce 2 n ( z , h 2 ) ,
28.10.3 2 π 0 π / 2 sin ( 2 h cos z cos t ) ce 2 n + 1 ( t , h 2 ) d t = h A 1 2 n + 1 ( h 2 ) ce 2 n + 1 ( 1 2 π , h 2 ) ce 2 n + 1 ( z , h 2 ) ,
28.10.5 2 π 0 π / 2 sinh ( 2 h sin z sin t ) se 2 n + 1 ( t , h 2 ) d t = h B 1 2 n + 1 ( h 2 ) se 2 n + 1 ( 0 , h 2 ) se 2 n + 1 ( z , h 2 ) ,
15: 28.2 Definitions and Basic Properties
28.2.19 q c 2 n + 2 ( a ( ν + 2 n ) 2 ) c 2 n + q c 2 n 2 = 0 , n .
28.2.21 w I ( 1 2 π ; a , q ) = 0 , a = a 2 n ( q ) , w I ( 1 2 π ; a , q ) = 0 , a = a 2 n + 1 ( q ) ,
28.2.22 w II ( 1 2 π ; a , q ) = 0 , a = b 2 n + 1 ( q ) , w II ( 1 2 π ; a , q ) = 0 , a = b 2 n + 2 ( q ) ,
28.2.34 ce 2 n ( z , q ) = ( 1 ) n ce 2 n ( 1 2 π z , q ) ,
16: 36.7 Zeros
36.7.4 z n = ± 3 ( 1 4 π ( 2 n 1 2 ) ) 1 / 3 = 3.48734 ( n 1 4 ) 1 / 3 , n = 1 , 2 , 3 , .
36.7.6 exp ( 2 π i ( z z n Δ z + 2 x Δ x ) ) ( 2 exp ( 6 π i x Δ x ) cos ( 2 3 π y Δ x ) + 1 ) = 3 .
17: 31.15 Stieltjes Polynomials
31.15.2 j = 1 N γ j / 2 z k a j + j = 1 j k n 1 z k z j = 0 , k = 1 , 2 , , n .
31.15.3 j = 1 N γ j t k a j + j = 1 n 1 1 t k z j = 0 .
31.15.6 a j < a j + 1 , j = 1 , 2 , , N 1 ,
If the exponent and singularity parameters satisfy (31.15.5)–(31.15.6), then for every multi-index 𝐦 = ( m 1 , m 2 , , m N 1 ) , where each m j is a nonnegative integer, there is a unique Stieltjes polynomial with m j zeros in the open interval ( a j , a j + 1 ) for each j = 1 , 2 , , N 1 . …
18: 28.8 Asymptotic Expansions for Large q
28.8.4 U m ( ξ ) D m ( ξ ) 1 2 6 h ( D m + 4 ( ξ ) 4 ! ( m 4 ) D m 4 ( ξ ) ) + 1 2 13 h 2 ( D m + 8 ( ξ ) 2 5 ( m + 2 ) D m + 4 ( ξ ) + 4 !  2 5 ( m 1 ) ( m 4 ) D m 4 ( ξ ) + 8 ! ( m 8 ) D m 8 ( ξ ) ) + ,
28.8.5 V m ( ξ ) 1 2 4 h ( D m + 2 ( ξ ) m ( m 1 ) D m 2 ( ξ ) ) + 1 2 10 h 2 ( D m + 6 ( ξ ) + ( m 2 25 m 36 ) D m + 2 ( ξ ) m ( m 1 ) ( m 2 + 27 m 10 ) D m 2 ( ξ ) 6 ! ( m 6 ) D m 6 ( ξ ) ) + ,
28.8.9 W m ± ( x ) = e ± 2 h sin x ( cos x ) m + 1 { ( cos ( 1 2 x + 1 4 π ) ) 2 m + 1 , ( sin ( 1 2 x + 1 4 π ) ) 2 m + 1 ,
28.8.11 P m ( x ) 1 + s 2 3 h cos 2 x + 1 h 2 ( s 4 + 86 s 2 + 105 2 11 cos 4 x s 4 + 22 s 2 + 57 2 11 cos 2 x ) + ,
28.8.12 Q m ( x ) sin x cos 2 x ( 1 2 5 h ( s 2 + 3 ) + 1 2 9 h 2 ( s 3 + 3 s + 4 s 3 + 44 s cos 2 x ) ) + .
19: 24.17 Mathematical Applications
Let 0 h 1 and a , m , and n be integers such that n > a , m > 0 , and f ( m ) ( x ) is absolutely integrable over [ a , n ] . …
24.17.1 j = a n 1 ( 1 ) j f ( j + h ) = 1 2 k = 0 m 1 E k ( h ) k ! ( ( 1 ) n 1 f ( k ) ( n ) + ( 1 ) a f ( k ) ( a ) ) + R m ( n ) ,
20: 8.18 Asymptotic Expansions of I x ( a , b )
8.18.1 I x ( a , b ) = Γ ( a + b ) x a ( 1 x ) b 1 ( k = 0 n 1 1 Γ ( a + k + 1 ) Γ ( b k ) ( x 1 x ) k + O ( 1 Γ ( a + n + 1 ) ) ) ,
8.18.3 I x ( a , b ) = Γ ( a + b ) Γ ( a ) ( k = 0 n 1 d k F k + O ( a n ) F 0 ) ,
8.18.4 a F k + 1 = ( k + b a ξ ) F k + k ξ F k 1 ,
8.18.6 ( 1 e t t ) b 1 = k = 0 d k ( t ξ ) k .
8.18.9 I x ( a , b ) 1 2 erfc ( η b / 2 ) + 1 2 π ( a + b ) ( x x 0 ) a ( 1 x 1 x 0 ) b k = 0 ( 1 ) k c k ( η ) ( a + b ) k ,