About the Project

integer order

AdvancedHelp

(0.005 seconds)

11—20 of 179 matching pages

11: Software Index
12: Bibliography V
  • A. L. Van Buren and J. E. Boisvert (2007) Accurate calculation of the modified Mathieu functions of integer order. Quart. Appl. Math. 65 (1), pp. 1–23.
  • 13: 24.16 Generalizations
    Polynomials and Numbers of Integer Order
    In no particular order, other generalizations include: Bernoulli numbers and polynomials with arbitrary complex index (Butzer et al. (1992)); Euler numbers and polynomials with arbitrary complex index (Butzer et al. (1994)); q-analogs (Carlitz (1954a), Andrews and Foata (1980)); conjugate Bernoulli and Euler polynomials (Hauss (1997, 1998)); Bernoulli–Hurwitz numbers (Katz (1975)); poly-Bernoulli numbers (Kaneko (1997)); Universal Bernoulli numbers (Clarke (1989)); p -adic integer order Bernoulli numbers (Adelberg (1996)); p -adic q -Bernoulli numbers (Kim and Kim (1999)); periodic Bernoulli numbers (Berndt (1975b)); cotangent numbers (Girstmair (1990b)); Bernoulli–Carlitz numbers (Goss (1978)); Bernoulli–Padé numbers (Dilcher (2002)); Bernoulli numbers belonging to periodic functions (Urbanowicz (1988)); cyclotomic Bernoulli numbers (Girstmair (1990a)); modified Bernoulli numbers (Zagier (1998)); higher-order Bernoulli and Euler polynomials with multiple parameters (Erdélyi et al. (1953a, §§1.13.1, 1.14.1)).
    14: Bibliography S
  • J. Segura and A. Gil (1998) Parabolic cylinder functions of integer and half-integer orders for nonnegative arguments. Comput. Phys. Comm. 115 (1), pp. 69–86.
  • R. B. Shirts (1993b) Algorithm 721: MTIEU1 and MTIEU2: Two subroutines to compute eigenvalues and solutions to Mathieu’s differential equation for noninteger and integer order. ACM Trans. Math. Software 19 (3), pp. 391–406.
  • R. Szmytkowski (2009) On the derivative of the associated Legendre function of the first kind of integer degree with respect to its order (with applications to the construction of the associated Legendre function of the second kind of integer degree and order). J. Math. Chem. 46 (1), pp. 231–260.
  • R. Szmytkowski (2011) On the derivative of the associated Legendre function of the first kind of integer order with respect to its degree (with applications to the construction of the associated Legendre function of the second kind of integer degree and order). J. Math. Chem. 49 (7), pp. 1436–1477.
  • R. Szmytkowski (2012) On parameter derivatives of the associated Legendre function of the first kind (with applications to the construction of the associated Legendre function of the second kind of integer degree and order). J. Math. Anal. Appl. 386 (1), pp. 332–342.
  • 15: 11.2 Definitions
    11.2.1 𝐇 ν ( z ) = ( 1 2 z ) ν + 1 n = 0 ( 1 ) n ( 1 2 z ) 2 n Γ ( n + 3 2 ) Γ ( n + ν + 3 2 ) ,
    11.2.2 𝐋 ν ( z ) = i e 1 2 π i ν 𝐇 ν ( i z ) = ( 1 2 z ) ν + 1 n = 0 ( 1 2 z ) 2 n Γ ( n + 3 2 ) Γ ( n + ν + 3 2 ) .
    16: 11.10 Anger–Weber Functions
    11.10.10 S 1 ( ν , z ) = k = 0 ( 1 ) k ( 1 2 z ) 2 k Γ ( k + 1 2 ν + 1 ) Γ ( k 1 2 ν + 1 ) ,
    11.10.11 S 2 ( ν , z ) = k = 0 ( 1 ) k ( 1 2 z ) 2 k + 1 Γ ( k + 1 2 ν + 3 2 ) Γ ( k 1 2 ν + 3 2 ) .
    11.10.22 𝐄 n ( z ) = 𝐇 n ( z ) + 1 π k = 0 m 1 Γ ( k + 1 2 ) Γ ( n + 1 2 k ) ( 1 2 z ) n 2 k 1 ,
    11.10.23 𝐄 n ( z ) = 𝐇 n ( z ) + ( 1 ) n + 1 π k = 0 m 2 Γ ( n k 1 2 ) Γ ( k + 3 2 ) ( 1 2 z ) n + 2 k + 1 ,
    11.10.29 𝐉 n ( z ) = J n ( z ) , n .
    17: 14.7 Integer Degree and Order
    §14.7 Integer Degree and Order
    18: 28.33 Physical Applications
  • Boundary-values problems arising from solution of the two-dimensional wave equation in elliptical coordinates. This yields a pair of equations of the form (28.2.1) and (28.20.1), and the appropriate solution of (28.2.1) is usually a periodic solution of integer order. See §28.33(ii).

  • 19: Bibliography P
  • S. Paszkowski (1991) Evaluation of the Fermi-Dirac integral of half-integer order. Zastos. Mat. 21 (2), pp. 289–301.
  • 20: Bibliography B
  • L. V. Babushkina, M. K. Kerimov, and A. I. Nikitin (1988a) Algorithms for computing Bessel functions of half-integer order with complex arguments. Zh. Vychisl. Mat. i Mat. Fiz. 28 (10), pp. 1449–1460, 1597.
  • W. G. Bickley, L. J. Comrie, J. C. P. Miller, D. H. Sadler, and A. J. Thompson (1952) Bessel Functions. Part II: Functions of Positive Integer Order. British Association for the Advancement of Science, Mathematical Tables, Volume 10, Cambridge University Press, Cambridge.
  • W. Börsch-Supan (1960) Algorithm 21: Bessel function for a set of integer orders. Comm. ACM 3 (11), pp. 600.