About the Project

integer%20parameters

AdvancedHelp

(0.002 seconds)

1—10 of 26 matching pages

1: 26.14 Permutations: Order Notation
26.14.1 inv ( σ ) = 1 j < k n σ ( j ) > σ ( k ) 1 .
Equivalently, this is the sum over 1 j < n of the number of integers less than σ ( j ) that lie in positions to the right of the j th position: inv ( 35247816 ) = 2 + 3 + 1 + 1 + 2 + 2 + 0 = 11 .
26.14.2 maj ( σ ) = 1 j < n σ ( j ) > σ ( j + 1 ) j .
26.14.3 σ 𝔖 n q inv ( σ ) = σ 𝔖 n q maj ( σ ) = j = 1 n 1 q j 1 q .
26.14.6 n k = j = 0 k ( 1 ) j ( n + 1 j ) ( k + 1 j ) n , n 1 ,
2: 33.3 Graphics
See accompanying text
Figure 33.3.4: F ( η , ρ ) , G ( η , ρ ) with = 0 , η = 10 . The turning point is at ρ tp ( 10 , 0 ) = 20 . Magnify
33.3.1 M ( η , ρ ) = ( F 2 ( η , ρ ) + G 2 ( η , ρ ) ) 1 / 2 = | H ± ( η , ρ ) | .
3: 26.10 Integer Partitions: Other Restrictions
§26.10 Integer Partitions: Other Restrictions
§26.10(i) Definitions
§26.10(ii) Generating Functions
§26.10(iii) Recurrence Relations
4: 32.8 Rational Solutions
P II P VI  possess hierarchies of rational solutions for special values of the parameters which are generated from “seed solutions” using the Bäcklund transformations and often can be expressed in the form of determinants. … Rational solutions of P II  exist for α = n ( ) and are generated using the seed solution w ( z ; 0 ) = 0 and the Bäcklund transformations (32.7.1) and (32.7.2). … with n . … with m , n . The rational solutions when the parameters satisfy (32.8.22) are special cases of §32.10(iv). …
5: 36.4 Bifurcation Sets
36.4.6 27 x 2 = 8 y 3 .
x = 9 20 z 2 .
x = 3 20 z 2 ,
36.4.11 x + i y = z 2 exp ( 2 3 i π m ) , m = 0 , 1 , 2 .
36.4.13 x = y = 1 4 z 2 .
6: 28.8 Asymptotic Expansions for Large q
28.8.1 a m ( h 2 ) b m + 1 ( h 2 ) } 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
7: 30.9 Asymptotic Approximations and Expansions
30.9.1 λ n m ( γ 2 ) γ 2 + γ q + β 0 + β 1 γ 1 + β 2 γ 2 + ,
2 20 β 5 = 527 q 7 61529 q 5 10 43961 q 3 22 41599 q + 32 m 2 ( 5739 q 5 + 1 27550 q 3 + 2 98951 q ) 2048 m 4 ( 355 q 3 + 1505 q ) + 65536 m 6 q .
For uniform asymptotic expansions in terms of Airy or Bessel functions for real values of the parameters, complex values of the variable, and with explicit error bounds see Dunster (1986). …
30.9.4 λ n m ( γ 2 ) 2 q | γ | + c 0 + c 1 | γ | 1 + c 2 | γ | 2 + ,
For uniform asymptotic expansions in terms of elementary, Airy, or Bessel functions for real values of the parameters, complex values of the variable, and with explicit error bounds see Dunster (1992, 1995). …
8: 25.11 Hurwitz Zeta Function
25.11.3 ζ ( s , a ) = ζ ( s , a + 1 ) + a s ,
See accompanying text
Figure 25.11.1: Hurwitz zeta function ζ ( x , a ) , a = 0. …8, 1, 20 x 10 . … Magnify
where h , k are integers with 1 h k and n = 1 , 2 , 3 , . …
§25.11(xii) a -Asymptotic Behavior
Similarly, as a in the sector | ph a | 1 2 π δ ( < 1 2 π ) , …
9: 11.6 Asymptotic Expansions
For fixed λ ( > 1 )
11.6.6 𝐊 ν ( λ ν ) ( 1 2 λ ν ) ν 1 π Γ ( ν + 1 2 ) k = 0 k ! c k ( λ ) ν k , | ph ν | 1 2 π δ ,
11.6.7 𝐌 ν ( λ ν ) ( 1 2 λ ν ) ν 1 π Γ ( ν + 1 2 ) k = 0 k ! c k ( i λ ) ν k , | ph ν | 1 2 π δ .
c 3 ( λ ) = 20 λ 6 4 λ 4 ,
10: 12.11 Zeros
If a > 1 2 , then V ( a , x ) has no positive real zeros, and if a = 3 2 2 n , n , then V ( a , x ) has a zero at x = 0 . … When a > 1 2 the zeros are asymptotically given by z a , s and z a , s ¯ , where s is a large positive integer and …
§12.11(iii) Asymptotic Expansions for Large Parameter
12.11.4 u a , s 2 1 2 μ ( p 0 ( α ) + p 1 ( α ) μ 4 + p 2 ( α ) μ 8 + ) ,
12.11.9 u a , 1 2 1 2 μ ( 1 1.85575 708 μ 4 / 3 0.34438 34 μ 8 / 3 0.16871 5 μ 4 0.11414 μ 16 / 3 0.0808 μ 20 / 3 ) ,