About the Project

integer%20argument

AdvancedHelp

(0.002 seconds)

1—10 of 12 matching pages

1: 25.6 Integer Arguments
§25.6 Integer Arguments
§25.6(i) Function Values
25.6.3 ζ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
§25.6(ii) Derivative Values
25.6.19 ( m + n + 3 2 ) ζ ( 2 m + 2 n + 2 ) = ( k = 1 m + k = 1 n ) ζ ( 2 k ) ζ ( 2 m + 2 n + 2 2 k ) , m 0 , n 0 , m + n 1 .
2: 22.3 Graphics
sn ( x , k ) , cn ( x , k ) , and dn ( x , k ) as functions of real arguments x and k . …
See accompanying text
Figure 22.3.13: sn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
See accompanying text
Figure 22.3.14: cn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
See accompanying text
Figure 22.3.15: dn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
See accompanying text
Figure 22.3.28: Density plot of | sn ( 20 , k ) | as a function of complex k 2 , 10 ( k 2 ) 20 , 10 ( k 2 ) 10 . … Magnify
3: 9.7 Asymptotic Expansions
9.7.3 χ ( x ) π 1 / 2 Γ ( 1 2 x + 1 ) / Γ ( 1 2 x + 1 2 ) .
9.7.4 χ ( x ) ( 1 2 π x ) 1 / 2 .
Numerical values of χ ( n ) are given in Table 9.7.1 for n = 1 ( 1 ) 20 to 2D. …
9.7.20 R n ( z ) = ( 1 ) n k = 0 m 1 ( 1 ) k u k G n k ( 2 ζ ) ζ k + R m , n ( z ) ,
9.7.21 S n ( z ) = ( 1 ) n 1 k = 0 m 1 ( 1 ) k v k G n k ( 2 ζ ) ζ k + S m , n ( z ) ,
4: Bibliography B
  • L. V. Babushkina, M. K. Kerimov, and A. I. Nikitin (1988a) Algorithms for computing Bessel functions of half-integer order with complex arguments. Zh. Vychisl. Mat. i Mat. Fiz. 28 (10), pp. 1449–1460, 1597.
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. Bühring (1992) Generalized hypergeometric functions at unit argument. Proc. Amer. Math. Soc. 114 (1), pp. 145–153.
  • 5: Bibliography F
  • P. Falloon (2001) Theory and Computation of Spheroidal Harmonics with General Arguments. Master’s Thesis, The University of Western Australia, Department of Physics.
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • L. Fox (1960) Tables of Weber Parabolic Cylinder Functions and Other Functions for Large Arguments. National Physical Laboratory Mathematical Tables, Vol. 4. Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
  • C. L. Frenzen (1992) Error bounds for the asymptotic expansion of the ratio of two gamma functions with complex argument. SIAM J. Math. Anal. 23 (2), pp. 505–511.
  • T. Fukushima (2010) Fast computation of incomplete elliptic integral of first kind by half argument transformation. Numer. Math. 116 (4), pp. 687–719.
  • 6: Software Index
    7: Bibliography D
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • C. F. du Toit (1993) Bessel functions J n ( z ) and Y n ( z ) of integer order and complex argument. Comput. Phys. Comm. 78 (1-2), pp. 181–189.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • T. M. Dunster (2013) Conical functions of purely imaginary order and argument. Proc. Roy. Soc. Edinburgh Sect. A 143 (5), pp. 929–955.
  • 8: 20.11 Generalizations and Analogs
    For relatively prime integers m , n with n > 0 and m n even, the Gauss sum G ( m , n ) is defined by
    20.11.1 G ( m , n ) = k = 0 n 1 e π i k 2 m / n ;
    If both m , n are positive, then G ( m , n ) allows inversion of its arguments as a modular transformation (compare (23.15.3) and (23.15.4)): …
    20.11.3 f ( a , b ) = n = a n ( n + 1 ) / 2 b n ( n 1 ) / 2 ,
    20.11.8 φ m , n ( z , q ) = θ n ( 0 , q ) θ m ( z , q ) θ m ( 0 , q ) θ n ( z , q ) , m , n = 2 , 3 , 4 .
    9: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • A. Abramov (1960) Tables of ln Γ ( z ) for Complex Argument. Pergamon Press, New York.
  • G. Allasia and R. Besenghi (1991) Numerical evaluation of the Kummer function with complex argument by the trapezoidal rule. Rend. Sem. Mat. Univ. Politec. Torino 49 (3), pp. 315–327.
  • D. E. Amos (1985) A subroutine package for Bessel functions of a complex argument and nonnegative order. Technical Report Technical Report SAND85-1018, Sandia National Laboratories, Albuquerque, NM.
  • R. W. B. Ardill and K. J. M. Moriarty (1978) Spherical Bessel functions j n and y n of integer order and real argument. Comput. Phys. Comm. 14 (3-4), pp. 261–265.
  • 10: Bibliography M
  • L. C. Maximon (2003) The dilogarithm function for complex argument. Proc. Roy. Soc. London Ser. A 459, pp. 2807–2819.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • J. Miller and V. S. Adamchik (1998) Derivatives of the Hurwitz zeta function for rational arguments. J. Comput. Appl. Math. 100 (2), pp. 201–206.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • R. Morris (1979) The dilogarithm function of a real argument. Math. Comp. 33 (146), pp. 778–787.