About the Project

infinite%20series

AdvancedHelp

(0.002 seconds)

1—10 of 16 matching pages

1: 25.12 Polylogarithms
The cosine series in (25.12.7) has the elementary sum … For real or complex s and z the polylogarithm Li s ( z ) is defined by … For each fixed complex s the series defines an analytic function of z for | z | < 1 . The series also converges when | z | = 1 , provided that s > 1 . … The notation ϕ ( z , s ) was used for Li s ( z ) in Truesdell (1945) for a series treated in Jonquière (1889), hence the alternative name Jonquière’s function. …
2: 8.17 Incomplete Beta Functions
For sums of infinite series whose terms involve the incomplete beta function see Hansen (1975, §62). …
8.17.24 I x ( m , n ) = ( 1 x ) n j = m ( n + j 1 j ) x j , m , n positive integers; 0 x < 1 .
3: Bibliography R
  • J. T. Ratnanather, J. H. Kim, S. Zhang, A. M. J. Davis, and S. K. Lucas (2014) Algorithm 935: IIPBF, a MATLAB toolbox for infinite integral of products of two Bessel functions. ACM Trans. Math. Softw. 40 (2), pp. 14:1–14:12.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • R. Reynolds and A. Stauffer (2021) Infinite Sum of the Incomplete Gamma Function Expressed in Terms of the Hurwitz Zeta Function. Mathematics 9 (16).
  • H. Rosengren (2004) Elliptic hypergeometric series on root systems. Adv. Math. 181 (2), pp. 417–447.
  • R. Roy (2011) Sources in the development of mathematics. Cambridge University Press, Cambridge.
  • 4: Bibliography S
  • H. Shanker (1940a) On integral representation of Weber’s parabolic cylinder function and its expansion into an infinite series. J. Indian Math. Soc. (N. S.) 4, pp. 34–38.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • A. Sidi (1997) Computation of infinite integrals involving Bessel functions of arbitrary order by the D ¯ -transformation. J. Comput. Appl. Math. 78 (1), pp. 125–130.
  • F. Stenger (1993) Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Vol. 20, Springer-Verlag, New York.
  • S. K. Suslov (2003) An Introduction to Basic Fourier Series. Developments in Mathematics, Vol. 9, Kluwer Academic Publishers, Dordrecht.
  • 5: Bibliography M
  • H. Maass (1971) Siegel’s modular forms and Dirichlet series. Lecture Notes in Mathematics, Vol. 216, Springer-Verlag, Berlin.
  • S. C. Milne (2002) Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6 (1), pp. 7–149.
  • S. C. Milne (1996) New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function. Proc. Nat. Acad. Sci. U.S.A. 93 (26), pp. 15004–15008.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • L. J. Mordell (1958) On the evaluation of some multiple series. J. London Math. Soc. (2) 33, pp. 368–371.
  • 6: 25.6 Integer Arguments
    25.6.3 ζ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
    25.6.8 ζ ( 2 ) = 3 k = 1 1 k 2 ( 2 k k ) .
    25.6.9 ζ ( 3 ) = 5 2 k = 1 ( 1 ) k 1 k 3 ( 2 k k ) .
    25.6.10 ζ ( 4 ) = 36 17 k = 1 1 k 4 ( 2 k k ) .
    25.6.12 ζ ′′ ( 0 ) = 1 2 ( ln ( 2 π ) ) 2 + 1 2 γ 2 1 24 π 2 + γ 1 ,
    7: Bibliography D
  • G. Delic (1979b) Chebyshev series for the spherical Bessel function j l ( r ) . Comput. Phys. Comm. 18 (1), pp. 73–86.
  • P. Dienes (1931) The Taylor Series. Oxford University Press, Oxford.
  • A. L. Dixon and W. L. Ferrar (1930) Infinite integrals in the theory of Bessel functions. Quart. J. Math., Oxford Ser. 1 (1), pp. 122–145.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • 8: Bibliography K
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. D. Kerr (1978) An indirect method for evaluating certain infinite integrals. Z. Angew. Math. Phys. 29 (3), pp. 380–386.
  • K. Knopp (1964) Theorie und Anwendung der unendlichen Reihen. 4th edition, Die Grundlehren der mathematischen Wissenschaften, Band 2, Springer-Verlag, Berlin-Heidelberg (German).
  • C. Krattenthaler (1993) HYP and HYPQ. Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q -binomial sums and basic hypergeometric series. Séminaire Lotharingien de Combinatoire 30, pp. 61–76.
  • 9: 19.36 Methods of Computation
    The incomplete integrals R F ( x , y , z ) and R G ( x , y , z ) can be computed by successive transformations in which two of the three variables converge quadratically to a common value and the integrals reduce to R C , accompanied by two quadratically convergent series in the case of R G ; compare Carlson (1965, §§5,6). … If the iteration of (19.36.6) and (19.36.12) is stopped when c s < r t s ( M and T being approximated by a s and t s , and the infinite series being truncated), then the relative error in R F and R G is less than r if we neglect terms of order r 2 . … For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). … For series expansions of Legendre’s integrals see §19.5. Faster convergence of power series for K ( k ) and E ( k ) can be achieved by using (19.5.1) and (19.5.2) in the right-hand sides of (19.8.12). …
    10: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • M. V. Berry (1991) Infinitely many Stokes smoothings in the gamma function. Proc. Roy. Soc. London Ser. A 434, pp. 465–472.
  • W. G. Bickley and J. Nayler (1935) A short table of the functions Ki n ( x ) , from n = 1 to n = 16 . Phil. Mag. Series 7 20, pp. 343–347.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.