About the Project

infinite%20product

AdvancedHelp

(0.002 seconds)

9 matching pages

1: 27.2 Functions
Functions in this section derive their properties from the fundamental theorem of arithmetic, which states that every integer n > 1 can be represented uniquely as a product of prime powers,
27.2.1 n = r = 1 ν ( n ) p r a r ,
Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … It is the special case k = 2 of the function d k ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …
Table 27.2.2: Functions related to division.
n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
2: Bibliography R
  • J. T. Ratnanather, J. H. Kim, S. Zhang, A. M. J. Davis, and S. K. Lucas (2014) Algorithm 935: IIPBF, a MATLAB toolbox for infinite integral of products of two Bessel functions. ACM Trans. Math. Softw. 40 (2), pp. 14:1–14:12.
  • W. H. Reid (1997a) Integral representations for products of Airy functions. II. Cubic products. Z. Angew. Math. Phys. 48 (4), pp. 646–655.
  • W. H. Reid (1997b) Integral representations for products of Airy functions. III. Quartic products. Z. Angew. Math. Phys. 48 (4), pp. 656–664.
  • R. Reynolds and A. Stauffer (2021) Infinite Sum of the Incomplete Gamma Function Expressed in Terms of the Hurwitz Zeta Function. Mathematics 9 (16).
  • R. Roy (2011) Sources in the development of mathematics. Cambridge University Press, Cambridge.
  • 3: Bibliography D
  • K. Dilcher (1996) Sums of products of Bernoulli numbers. J. Number Theory 60 (1), pp. 23–41.
  • A. L. Dixon and W. L. Ferrar (1930) Infinite integrals in the theory of Bessel functions. Quart. J. Math., Oxford Ser. 1 (1), pp. 122–145.
  • R. McD. Dodds and G. Wiechers (1972) Vector coupling coefficients as products of prime factors. Comput. Phys. Comm. 4 (2), pp. 268–274.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • L. Durand (1978) Product formulas and Nicholson-type integrals for Jacobi functions. I. Summary of results. SIAM J. Math. Anal. 9 (1), pp. 76–86.
  • 4: Bibliography S
  • L. Z. Salchev and V. B. Popov (1976) A property of the zeros of cross-product Bessel functions of different orders. Z. Angew. Math. Mech. 56 (2), pp. 120–121.
  • H. Shanker (1940a) On integral representation of Weber’s parabolic cylinder function and its expansion into an infinite series. J. Indian Math. Soc. (N. S.) 4, pp. 34–38.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • N. T. Shawagfeh (1992) The Laplace transforms of products of Airy functions. Dirāsāt Ser. B Pure Appl. Sci. 19 (2), pp. 7–11.
  • A. Sidi (1997) Computation of infinite integrals involving Bessel functions of arbitrary order by the D ¯ -transformation. J. Comput. Appl. Math. 78 (1), pp. 125–130.
  • 5: Bibliography C
  • J. Chen (1966) On the representation of a large even integer as the sum of a prime and the product of at most two primes. Kexue Tongbao (Foreign Lang. Ed.) 17, pp. 385–386.
  • J. A. Cochran (1964) Remarks on the zeros of cross-product Bessel functions. J. Soc. Indust. Appl. Math. 12 (3), pp. 580–587.
  • J. A. Cochran (1966a) The analyticity of cross-product Bessel function zeros. Proc. Cambridge Philos. Soc. 62, pp. 215–226.
  • J. A. Cochran (1966b) The asymptotic nature of zeros of cross-product Bessel functions. Quart. J. Mech. Appl. Math. 19 (4), pp. 511–522.
  • W. C. Connett, C. Markett, and A. L. Schwartz (1993) Product formulas and convolutions for angular and radial spheroidal wave functions. Trans. Amer. Math. Soc. 338 (2), pp. 695–710.
  • 6: Bibliography I
  • Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi, and M. Harada (1993) The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J 0 ( z ) i J 1 ( z ) and of Bessel functions J m ( z ) of any real order m . Linear Algebra Appl. 194, pp. 35–70.
  • M. Ikonomou, P. Köhler, and A. F. Jacob (1995) Computation of integrals over the half-line involving products of Bessel functions, with application to microwave transmission lines. Z. Angew. Math. Mech. 75 (12), pp. 917–926.
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • A. Iserles, P. E. Koch, S. P. Nørsett, and J. M. Sanz-Serna (1991) On polynomials orthogonal with respect to certain Sobolev inner products. J. Approx. Theory 65 (2), pp. 151–175.
  • 7: Bibliography
  • T. Agoh and K. Dilcher (2011) Integrals of products of Bernoulli polynomials. J. Math. Anal. Appl. 381 (1), pp. 10–16.
  • J. R. Albright (1977) Integrals of products of Airy functions. J. Phys. A 10 (4), pp. 485–490.
  • W. R. Alford, A. Granville, and C. Pomerance (1994) There are infinitely many Carmichael numbers. Ann. of Math. (2) 139 (3), pp. 703–722.
  • A. Apelblat (1983) Table of Definite and Infinite Integrals. Physical Sciences Data, Vol. 13, Elsevier Scientific Publishing Co., Amsterdam.
  • R. Askey, T. H. Koornwinder, and M. Rahman (1986) An integral of products of ultraspherical functions and a q -extension. J. London Math. Soc. (2) 33 (1), pp. 133–148.
  • 8: Bibliography W
  • P. L. Walker (1991) Infinitely differentiable generalized logarithmic and exponential functions. Math. Comp. 57 (196), pp. 723–733.
  • P. L. Walker (2012) Reduction formulae for products of theta functions. J. Res. Nat. Inst. Standards and Technology 117, pp. 297–303.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • J. Wishart (1928) The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20A, pp. 32–52.
  • 9: Bibliography V
  • J. Van Deun and R. Cools (2008) Integrating products of Bessel functions with an additional exponential or rational factor. Comput. Phys. Comm. 178 (8), pp. 578–590.
  • R. S. Varma (1941) An infinite series of Weber’s parabolic cylinder functions. Proc. Benares Math. Soc. (N.S.) 3, pp. 37.
  • A. N. Vavreck and W. Thompson (1984) Some novel infinite series of spherical Bessel functions. Quart. Appl. Math. 42 (3), pp. 321–324.
  • H. Volkmer (1999) Expansions in products of Heine-Stieltjes polynomials. Constr. Approx. 15 (4), pp. 467–480.
  • H. Volkmer (1984) Integral representations for products of Lamé functions by use of fundamental solutions. SIAM J. Math. Anal. 15 (3), pp. 559–569.