# inequalities

(0.000 seconds)

## 1—10 of 63 matching pages

##### 2: Edward Neuman
Neuman has published several papers on approximations and expansions, special functions, and mathematical inequalities. …
##### 3: 4.32 Inequalities
###### §4.32 Inequalities
For these and other inequalities involving hyperbolic functions see Mitrinović (1964, pp. 61, 76, 159) and Mitrinović (1970, p. 270).
##### 5: Bibliography Q
• F. Qi and J. Mei (1999) Some inequalities of the incomplete gamma and related functions. Z. Anal. Anwendungen 18 (3), pp. 793–799.
• F. Qi (2008) A new lower bound in the second Kershaw’s double inequality. J. Comput. Appl. Math. 214 (2), pp. 610–616.
• ##### 6: 10.37 Inequalities; Monotonicity
###### §10.37 Inequalities; Monotonicity
For sharper inequalities when the variables are real see Paris (1984) and Laforgia (1991). …
##### 8: 7.8 Inequalities
###### §7.8 Inequalities
7.8.7 $\frac{\sinh x^{2}}{x}<{\mathrm{e}}^{x^{2}}F\left(x\right)=\int_{0}^{x}{\mathrm% {e}}^{t^{2}}\,\mathrm{d}t<\frac{{\mathrm{e}}^{x^{2}}-1}{x},$ $x>0$.
7.8.8 $\operatorname{erf}x<\sqrt{1-{\mathrm{e}}^{-4x^{2}/\pi}},$ $x>0$.
##### 9: 24.9 Inequalities
###### §24.9 Inequalities
Except where otherwise noted, the inequalities in this section hold for $n=1,2,\dotsc$. …
##### 10: 4.5 Inequalities
###### §4.5(i) Logarithms
For more inequalities involving the logarithm function see Mitrinović (1964, pp. 75–77), Mitrinović (1970, pp. 272–276), and Bullen (1998, pp. 159–160).
###### §4.5(ii) Exponentials
(When $x=0$ the inequalities become equalities.) …