About the Project

incomplete%20Riemann%20zeta%20function

AdvancedHelp

(0.007 seconds)

10 matching pages

1: Bibliography B
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • M. V. Berry (1995) The Riemann-Siegel expansion for the zeta function: High orders and remainders. Proc. Roy. Soc. London Ser. A 450, pp. 439–462.
  • J. M. Borwein, D. M. Bradley, and R. E. Crandall (2000) Computational strategies for the Riemann zeta function. J. Comput. Appl. Math. 121 (1-2), pp. 247–296.
  • P. L. Butzer and M. Hauss (1992) Riemann zeta function: Rapidly converging series and integral representations. Appl. Math. Lett. 5 (2), pp. 83–88.
  • 2: Bibliography P
  • V. I. Pagurova (1965) An asymptotic formula for the incomplete gamma function. Ž. Vyčisl. Mat. i Mat. Fiz. 5, pp. 118–121 (Russian).
  • R. B. Paris (2002a) Error bounds for the uniform asymptotic expansion of the incomplete gamma function. J. Comput. Appl. Math. 147 (1), pp. 215–231.
  • K. Pearson (Ed.) (1968) Tables of the Incomplete Beta-function. 2nd edition, Published for the Biometrika Trustees at the Cambridge University Press, Cambridge.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • R. Piessens and M. Branders (1972) Chebyshev polynomial expansions of the Riemann zeta function. Math. Comp. 26 (120), pp. G1–G5.
  • 3: Bibliography K
  • A. A. Karatsuba and S. M. Voronin (1992) The Riemann Zeta-Function. de Gruyter Expositions in Mathematics, Vol. 5, Walter de Gruyter & Co., Berlin.
  • M. Katsurada (2003) Asymptotic expansions of certain q -series and a formula of Ramanujan for specific values of the Riemann zeta function. Acta Arith. 107 (3), pp. 269–298.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • K. S. Kölbig (1970) Complex zeros of an incomplete Riemann zeta function and of the incomplete gamma function. Math. Comp. 24 (111), pp. 679–696.
  • K. S. Kölbig (1972a) Complex zeros of two incomplete Riemann zeta functions. Math. Comp. 26 (118), pp. 551–565.
  • 4: Software Index
    Open Source With Book Commercial
    20 Theta Functions
    ‘✓’ indicates that a software package implements the functions in a section; ‘a’ indicates available functionality through optional or add-on packages; an empty space indicates no known support. … In the list below we identify four main sources of software for computing special functions. …
  • Commercial Software.

    Such software ranges from a collection of reusable software parts (e.g., a library) to fully functional interactive computing environments with an associated computing language. Such software is usually professionally developed, tested, and maintained to high standards. It is available for purchase, often with accompanying updates and consulting support.

  • The following are web-based software repositories with significant holdings in the area of special functions. …
    5: Bibliography
  • M. M. Agrest and M. S. Maksimov (1971) Theory of Incomplete Cylindrical Functions and Their Applications. Springer-Verlag, Berlin.
  • G. Allasia and R. Besenghi (1989) Numerical Calculation of the Riemann Zeta Function and Generalizations by Means of the Trapezoidal Rule. In Numerical and Applied Mathematics, Part II (Paris, 1988), C. Brezinski (Ed.), IMACS Ann. Comput. Appl. Math., Vol. 1, pp. 467–472.
  • H. Alzer (1997b) On some inequalities for the incomplete gamma function. Math. Comp. 66 (218), pp. 771–778.
  • T. M. Apostol and T. H. Vu (1984) Dirichlet series related to the Riemann zeta function. J. Number Theory 19 (1), pp. 85–102.
  • T. M. Apostol (1985a) Formulas for higher derivatives of the Riemann zeta function. Math. Comp. 44 (169), pp. 223–232.
  • 6: Bibliography C
  • M. A. Chaudhry and S. M. Zubair (1994) Generalized incomplete gamma functions with applications. J. Comput. Appl. Math. 55 (1), pp. 99–124.
  • B. K. Choudhury (1995) The Riemann zeta-function and its derivatives. Proc. Roy. Soc. London Ser. A 450, pp. 477–499.
  • R. Cicchetti and A. Faraone (2004) Incomplete Hankel and modified Bessel functions: A class of special functions for electromagnetics. IEEE Trans. Antennas and Propagation 52 (12), pp. 3373–3389.
  • W. J. Cody, K. E. Hillstrom, and H. C. Thacher (1971) Chebyshev approximations for the Riemann zeta function. Math. Comp. 25 (115), pp. 537–547.
  • A. Cruz, J. Esparza, and J. Sesma (1991) Zeros of the Hankel function of real order out of the principal Riemann sheet. J. Comput. Appl. Math. 37 (1-3), pp. 89–99.
  • 7: 5.11 Asymptotic Expansions
    Wrench (1968) gives exact values of g k up to g 20 . … where ζ ( K ) is as in Chapter 25. In the case K = 1 the factor 1 + ζ ( K ) is replaced with 4. … For re-expansions of the remainder terms in (5.11.1) and (5.11.3) in series of incomplete gamma functions with exponential improvement (§2.11(iii)) in the asymptotic expansions, see Berry (1991), Boyd (1994), and Paris and Kaminski (2001, §6.4). …
    8: Bibliography M
  • K. L. Majumder and G. P. Bhattacharjee (1973) Algorithm AS 63. The incomplete beta integral. Appl. Statist. 22 (3), pp. 409–411.
  • B. Markman (1965) Contribution no. 14. The Riemann zeta function. BIT 5, pp. 138–141.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • J. Miller and V. S. Adamchik (1998) Derivatives of the Hurwitz zeta function for rational arguments. J. Comput. Appl. Math. 100 (2), pp. 201–206.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 9: Bibliography V
  • J. van de Lune, H. J. J. te Riele, and D. T. Winter (1986) On the zeros of the Riemann zeta function in the critical strip. IV. Math. Comp. 46 (174), pp. 667–681.
  • H. Van de Vel (1969) On the series expansion method for computing incomplete elliptic integrals of the first and second kinds. Math. Comp. 23 (105), pp. 61–69.
  • I. M. Vinogradov (1958) A new estimate of the function ζ ( 1 + i t ) . Izv. Akad. Nauk SSSR. Ser. Mat. 22, pp. 161–164 (Russian).
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • H. von Koch (1901) Über die Riemann’sche Primzahlfunction. Math. Ann. 55, pp. 441–464 (German).
  • 10: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • R. Sitaramachandrarao and B. Davis (1986) Some identities involving the Riemann zeta function. II. Indian J. Pure Appl. Math. 17 (10), pp. 1175–1186.
  • H. M. Srivastava (1988) Sums of certain series of the Riemann zeta function. J. Math. Anal. Appl. 134 (1), pp. 129–140.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.