About the Project

in%20terms%20of%20Airy%20functions

AdvancedHelp

(0.008 seconds)

10 matching pages

1: 30.9 Asymptotic Approximations and Expansions
For uniform asymptotic expansions in terms of Airy or Bessel functions for real values of the parameters, complex values of the variable, and with explicit error bounds see Dunster (1986). …
§30.9(ii) Oblate Spheroidal Wave Functions
For uniform asymptotic expansions in terms of elementary, Airy, or Bessel functions for real values of the parameters, complex values of the variable, and with explicit error bounds see Dunster (1992, 1995). …
§30.9(iii) Other Approximations and Expansions
The asymptotic behavior of λ n m ( γ 2 ) and a n , k m ( γ 2 ) as n in descending powers of 2 n + 1 is derived in Meixner (1944). …
2: 36.5 Stokes Sets
K = 1 . Airy Function
For z 0 , the Stokes set is expressed in terms of scaled coordinates …in which … in which … The distribution of real and complex critical points in Figures 36.5.5 and 36.5.6 follows from consistency with Figure 36.5.1 and the fact that there are four real saddles in the inner regions. …
3: 12.10 Uniform Asymptotic Expansions for Large Parameter
The turning points can be included if expansions in terms of Airy functions are used instead of elementary functions2.8(iii)). …
§12.10(vii) Negative a , 2 a < x < . Expansions in Terms of Airy Functions
Modified Expansions
§12.10(viii) Negative a , < x < 2 a . Expansions in Terms of Airy Functions
4: 12.11 Zeros
§12.11(i) Distribution of Real Zeros
For large negative values of a the real zeros of U ( a , x ) , U ( a , x ) , V ( a , x ) , and V ( a , x ) can be approximated by reversion of the Airy-type asymptotic expansions of §§12.10(vii) and 12.10(viii). …Here α = μ 4 3 a s , a s denoting the s th negative zero of the function Ai (see §9.9(i)). … where β = μ 4 3 a s , a s denoting the s th negative zero of the function Ai and … For further information, including associated functions, see Olver (1959).
5: Bibliography B
  • P. Baldwin (1985) Zeros of generalized Airy functions. Mathematika 32 (1), pp. 104–117.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • P. Baratella and L. Gatteschi (1988) The Bounds for the Error Term of an Asymptotic Approximation of Jacobi Polynomials. In Orthogonal Polynomials and Their Applications (Segovia, 1986), Lecture Notes in Math., Vol. 1329, pp. 203–221.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • 6: Bibliography S
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • N. T. Shawagfeh (1992) The Laplace transforms of products of Airy functions. Dirāsāt Ser. B Pure Appl. Sci. 19 (2), pp. 7–11.
  • T. Shiota (1986) Characterization of Jacobian varieties in terms of soliton equations. Invent. Math. 83 (2), pp. 333–382.
  • K. Soni (1980) Exact error terms in the asymptotic expansion of a class of integral transforms. I. Oscillatory kernels. SIAM J. Math. Anal. 11 (5), pp. 828–841.
  • F. Stenger (1993) Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Vol. 20, Springer-Verlag, New York.
  • 7: Bibliography G
  • W. Gautschi (2002a) Computation of Bessel and Airy functions and of related Gaussian quadrature formulae. BIT 42 (1), pp. 110–118.
  • A. G. Gibbs (1973) Problem 72-21, Laplace transforms of Airy functions. SIAM Rev. 15 (4), pp. 796–798.
  • A. Gil, J. Segura, and N. M. Temme (2001) On nonoscillating integrals for computing inhomogeneous Airy functions. Math. Comp. 70 (235), pp. 1183–1194.
  • A. Gil, J. Segura, and N. M. Temme (2002c) Computing complex Airy functions by numerical quadrature. Numer. Algorithms 30 (1), pp. 11–23.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • 8: Bibliography C
  • T. M. Cherry (1948) Expansions in terms of parabolic cylinder functions. Proc. Edinburgh Math. Soc. (2) 8, pp. 50–65.
  • R. C. Y. Chin and G. W. Hedstrom (1978) A dispersion analysis for difference schemes: Tables of generalized Airy functions. Math. Comp. 32 (144), pp. 1163–1170.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • E. D. Constantinides and R. J. Marhefka (1993) Efficient and accurate computation of the incomplete Airy functions. Radio Science 28 (4), pp. 441–457.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • 9: Bibliography
  • M. Abramowitz (1954) Regular and irregular Coulomb wave functions expressed in terms of Bessel-Clifford functions. J. Math. Physics 33, pp. 111–116.
  • G. B. Airy (1838) On the intensity of light in the neighbourhood of a caustic. Trans. Camb. Phil. Soc. 6, pp. 379–402.
  • G. B. Airy (1849) Supplement to a paper “On the intensity of light in the neighbourhood of a caustic”. Trans. Camb. Phil. Soc. 8, pp. 595–599.
  • J. R. Albright and E. P. Gavathas (1986) Integrals involving Airy functions. J. Phys. A 19 (13), pp. 2663–2665.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • 10: Bibliography M
  • A. J. MacLeod (1994) Computation of inhomogeneous Airy functions. J. Comput. Appl. Math. 53 (1), pp. 109–116.
  • P. Martín, R. Pérez, and A. L. Guerrero (1992) Two-point quasi-fractional approximations to the Airy function Ai ( x ) . J. Comput. Phys. 99 (2), pp. 337–340.
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • J. W. Miles (1980) The Second Painlevé Transcendent: A Nonlinear Airy Function. In Mechanics Today, Vol. 5, pp. 297–313.
  • H. J. W. Müller (1966b) Asymptotic expansions of ellipsoidal wave functions in terms of Hermite functions. Math. Nachr. 32, pp. 49–62.