About the Project

improved%20accuracy%20via%20numerical%20transformations

AdvancedHelp

(0.006 seconds)

1—10 of 431 matching pages

1: Bibliography N
β–Ί
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • β–Ί
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • β–Ί
  • G. Nemes (2013b) Error bounds and exponential improvement for Hermite’s asymptotic expansion for the gamma function. Appl. Anal. Discrete Math. 7 (1), pp. 161–179.
  • β–Ί
  • G. Nemes (2014a) Error bounds and exponential improvement for the asymptotic expansion of the Barnes G -function. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2172), pp. 20140534, 14.
  • β–Ί
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • 2: 2.11 Remainder Terms; Stokes Phenomenon
    β–Ί
    §2.11(vi) Direct Numerical Transformations
    β–ΊFurther improvements in accuracy can be realized by making a second application of the Euler transformation; see Olver (1997b, pp. 540–543). β–ΊSimilar improvements are achievable by Aitken’s Ξ” 2 -process, Wynn’s Ο΅ -algorithm, and other acceleration transformations. … β–ΊFor example, using double precision d 20 is found to agree with (2.11.31) to 13D. … β–ΊFor example, extrapolated values may converge to an accurate value on one side of a Stokes line (§2.11(iv)), and converge to a quite inaccurate value on the other.
    3: Bibliography W
    β–Ί
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • β–Ί
  • T. Weider (1999) Algorithm 794: Numerical Hankel transform by the Fortran program HANKEL. ACM Trans. Math. Software 25 (2), pp. 240–250.
  • β–Ί
  • R. J. Wells (1999) Rapid approximation to the Voigt/Faddeeva function and its derivatives. J. Quant. Spect. and Rad. Transfer 62 (1), pp. 29–48.
  • β–Ί
  • E. P. Wigner (1959) Group Theory and its Application to the Quantum Mechanics of Atomic Spectra. Pure and Applied Physics. Vol. 5, Academic Press, New York.
  • β–Ί
  • M. E. Wojcicki (1961) Algorithm 44: Bessel functions computed recursively. Comm. ACM 4 (4), pp. 177–178.
  • 4: Bibliography K
    β–Ί
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • β–Ί
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • β–Ί
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • β–Ί
  • G. A. Kolesnik (1969) An improvement of the remainder term in the divisor problem. Mat. Zametki 6, pp. 545–554 (Russian).
  • β–Ί
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • 5: Bibliography B
    β–Ί
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • β–Ί
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • β–Ί
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • β–Ί
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • β–Ί
  • R. Bulirsch (1965a) Numerical calculation of elliptic integrals and elliptic functions. II. Numer. Math. 7 (4), pp. 353–354.
  • 6: 20 Theta Functions
    Chapter 20 Theta Functions
    7: Bibliography O
    β–Ί
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • β–Ί
  • F. W. J. Olver (1976) Improved error bounds for second-order differential equations with two turning points. J. Res. Nat. Bur. Standards Sect. B 80B (4), pp. 437–440.
  • β–Ί
  • F. W. J. Olver (1991a) Uniform, exponentially improved, asymptotic expansions for the generalized exponential integral. SIAM J. Math. Anal. 22 (5), pp. 1460–1474.
  • β–Ί
  • F. W. J. Olver (1991b) Uniform, exponentially improved, asymptotic expansions for the confluent hypergeometric function and other integral transforms. SIAM J. Math. Anal. 22 (5), pp. 1475–1489.
  • β–Ί
  • F. W. J. Olver (1993a) Exponentially-improved asymptotic solutions of ordinary differential equations I: The confluent hypergeometric function. SIAM J. Math. Anal. 24 (3), pp. 756–767.
  • 8: Bibliography G
    β–Ί
  • W. Gautschi (1973) Algorithm 471: Exponential integrals. Comm. ACM 16 (12), pp. 761–763.
  • β–Ί
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • β–Ί
  • A. Gil, J. Segura, and N. M. Temme (2012) An improved algorithm and a Fortran 90 module for computing the conical function P 1 / 2 + i ⁒ Ο„ m ⁒ ( x ) . Comput. Phys. Commun. 183 (3), pp. 794–799.
  • β–Ί
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • β–Ί
  • Ya. I. GranovskiΔ­, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 9: 1.14 Integral Transforms
    §1.14 Integral Transforms
    β–Ί
    §1.14(i) Fourier Transform
    β–Ί
    §1.14(iii) Laplace Transform
    β–Ί
    Fourier Transform
    β–Ί
    Laplace Transform
    10: 12.16 Mathematical Applications
    β–Ί β–ΊPCFs are also used in integral transforms with respect to the parameter, and inversion formulas exist for kernels containing PCFs. …Integral transforms and sampling expansions are considered in Jerri (1982).