About the Project

imaginary-modulus%20transformations

AdvancedHelp

(0.005 seconds)

1—10 of 279 matching pages

1: 1.14 Integral Transforms
§1.14 Integral Transforms
§1.14(i) Fourier Transform
§1.14(iii) Laplace Transform
Fourier Transform
Laplace Transform
2: 15.19 Methods of Computation
For z it is possible to use the linear transformations in such a way that the new arguments lie within the unit circle, except when z = e ± π i / 3 . This is because the linear transformations map the pair { e π i / 3 , e π i / 3 } onto itself. However, by appropriate choice of the constant z 0 in (15.15.1) we can obtain an infinite series that converges on a disk containing z = e ± π i / 3 . … When z > 1 2 it is better to begin with one of the linear transformations (15.8.4), (15.8.7), or (15.8.8). … …
3: 11.8 Analogs to Kelvin Functions
§11.8 Analogs to Kelvin Functions
For properties of Struve functions of argument x e ± 3 π i / 4 see McLachlan and Meyers (1936).
4: 9.2 Differential Equation
9.2.10 Bi ( z ) = e π i / 6 Ai ( z e 2 π i / 3 ) + e π i / 6 Ai ( z e 2 π i / 3 ) .
9.2.12 Ai ( z ) + e 2 π i / 3 Ai ( z e 2 π i / 3 ) + e 2 π i / 3 Ai ( z e 2 π i / 3 ) = 0 ,
9.2.13 Bi ( z ) + e 2 π i / 3 Bi ( z e 2 π i / 3 ) + e 2 π i / 3 Bi ( z e 2 π i / 3 ) = 0 .
9.2.14 Ai ( z ) = e π i / 3 Ai ( z e π i / 3 ) + e π i / 3 Ai ( z e π i / 3 ) ,
9.2.15 Bi ( z ) = e π i / 6 Ai ( z e π i / 3 ) + e π i / 6 Ai ( z e π i / 3 ) .
5: 9.12 Scorer Functions
e 2 π i / 3 Hi ( z e 2 π i / 3 ) ,
9.12.9 Hi ( z ) , Ai ( z e 2 π i / 3 ) , Ai ( z e 2 π i / 3 ) , | ph ( z ) | 2 3 π ,
9.12.10 e 2 π i / 3 Hi ( z e 2 π i / 3 ) , Ai ( z ) , Ai ( z e ± 2 π i / 3 ) , π ± ph z 1 3 π .
9.12.12 Gi ( z ) = 1 2 e π i / 3 Hi ( z e 2 π i / 3 ) + 1 2 e π i / 3 Hi ( z e 2 π i / 3 ) ,
9.12.14 Hi ( z ) = e ± 2 π i / 3 Hi ( z e ± 2 π i / 3 ) + 2 e π i / 6 Ai ( z e 2 π i / 3 ) .
6: 1.11 Zeros of Polynomials
ρ = 1 2 + 1 2 3 = e 2 π i / 3 ,
ρ 2 = e 2 π i / 3 .
Resolvent cubic is z 3 + 12 z 2 + 20 z + 9 = 0 with roots θ 1 = 1 , θ 2 = 1 2 ( 11 + 85 ) , θ 3 = 1 2 ( 11 85 ) , and θ 1 = 1 , θ 2 = 1 2 ( 17 + 5 ) , θ 3 = 1 2 ( 17 5 ) . … are 1 , e 2 π i / n , e 4 π i / n , , e ( 2 n 2 ) π i / n , and of z n + 1 = 0 they are e π i / n , e 3 π i / n , , e ( 2 n 1 ) π i / n . …
7: 10.27 Connection Formulas
10.27.8 K ν ( z ) = { 1 2 π i e ν π i / 2 H ν ( 1 ) ( z e π i / 2 ) , π ph z 1 2 π , 1 2 π i e ν π i / 2 H ν ( 2 ) ( z e π i / 2 ) , 1 2 π ph z π .
10.27.9 π i J ν ( z ) = e ν π i / 2 K ν ( z e π i / 2 ) e ν π i / 2 K ν ( z e π i / 2 ) , | ph z | 1 2 π .
10.27.10 π Y ν ( z ) = e ν π i / 2 K ν ( z e π i / 2 ) + e ν π i / 2 K ν ( z e π i / 2 ) , | ph z | 1 2 π .
10.27.11 Y ν ( z ) = e ± ( ν + 1 ) π i / 2 I ν ( z e π i / 2 ) ( 2 / π ) e ν π i / 2 K ν ( z e π i / 2 ) , 1 2 π ± ph z π .
8: 10.66 Expansions in Series of Bessel Functions
10.66.1 ber ν x + i bei ν x = k = 0 e ( 3 ν + k ) π i / 4 x k J ν + k ( x ) 2 k / 2 k ! = k = 0 e ( 3 ν + 3 k ) π i / 4 x k I ν + k ( x ) 2 k / 2 k ! .
9: 23.17 Elementary Properties
λ ( e π i / 3 ) = e π i / 3 ,
J ( e π i / 3 ) = 0 ,
η ( e π i / 3 ) = 3 1 / 8 ( Γ ( 1 3 ) ) 3 / 2 2 π e π i / 24 .
10: 20.11 Generalizations and Analogs
If both m , n are positive, then G ( m , n ) allows inversion of its arguments as a modular transformation (compare (23.15.3) and (23.15.4)):
20.11.2 1 n G ( m , n ) = 1 n k = 0 n 1 e π i k 2 m / n = e π i / 4 m j = 0 m 1 e π i j 2 n / m = e π i / 4 m G ( n , m ) .