About the Project

hypergeometric%20functions

AdvancedHelp

(0.005 seconds)

1—10 of 24 matching pages

1: Bibliography D
β–Ί
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • 2: Bibliography C
    β–Ί
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • 3: Bibliography K
    β–Ί
  • S. L. Kalla (1992) On the evaluation of the Gauss hypergeometric function. C. R. Acad. Bulgare Sci. 45 (6), pp. 35–36.
  • β–Ί
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • β–Ί
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • β–Ί
  • H. Ki and Y. Kim (2000) On the zeros of some generalized hypergeometric functions. J. Math. Anal. Appl. 243 (2), pp. 249–260.
  • β–Ί
  • C. Krattenthaler (1993) HYP and HYPQ. Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q -binomial sums and basic hypergeometric series. Séminaire Lotharingien de Combinatoire 30, pp. 61–76.
  • 4: Software Index
    β–Ί β–Ίβ–Ίβ–Ί
    Open Source With Book Commercial
    20 Theta Functions
    β–Ί‘βœ“’ indicates that a software package implements the functions in a section; ‘a’ indicates available functionality through optional or add-on packages; an empty space indicates no known support. … β–ΊIn the list below we identify four main sources of software for computing special functions. … β–Ί
  • Commercial Software.

    Such software ranges from a collection of reusable software parts (e.g., a library) to fully functional interactive computing environments with an associated computing language. Such software is usually professionally developed, tested, and maintained to high standards. It is available for purchase, often with accompanying updates and consulting support.

  • β–ΊThe following are web-based software repositories with significant holdings in the area of special functions. …
    5: Bibliography N
    β–Ί
  • M. Nardin, W. F. Perger, and A. Bhalla (1992a) Algorithm 707: CONHYP: A numerical evaluator of the confluent hypergeometric function for complex arguments of large magnitudes. ACM Trans. Math. Software 18 (3), pp. 345–349.
  • β–Ί
  • M. Nardin, W. F. Perger, and A. Bhalla (1992b) Numerical evaluation of the confluent hypergeometric function for complex arguments of large magnitudes. J. Comput. Appl. Math. 39 (2), pp. 193–200.
  • β–Ί
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • β–Ί
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • β–Ί
  • N. E. Nørlund (1955) Hypergeometric functions. Acta Math. 94, pp. 289–349.
  • 6: 15.10 Hypergeometric Differential Equation
    §15.10 Hypergeometric Differential Equation
    β–Ί
    15.10.1 z ⁒ ( 1 z ) ⁒ d 2 w d z 2 + ( c ( a + b + 1 ) ⁒ z ) ⁒ d w d z a ⁒ b ⁒ w = 0 .
    β–Ί
    Singularity z = 0
    β–Ί
    Singularity z = 1
    β–Ί
    Singularity z =
    7: 20.11 Generalizations and Analogs
    §20.11 Generalizations and Analogs
    β–Ίβ–ΊSimilar identities can be constructed for F 1 2 ⁑ ( 1 3 , 2 3 ; 1 ; k 2 ) , F 1 2 ⁑ ( 1 4 , 3 4 ; 1 ; k 2 ) , and F 1 2 ⁑ ( 1 6 , 5 6 ; 1 ; k 2 ) . …For applications to rapidly convergent expansions for Ο€ see Chudnovsky and Chudnovsky (1988), and for applications in the construction of elliptic-hypergeometric series see Rosengren (2004). β–Ί
    §20.11(iv) Theta Functions with Characteristics
    8: 13.30 Tables
    §13.30 Tables
    β–Ί
  • Ε½urina and Osipova (1964) tabulates M ⁑ ( a , b , x ) and U ⁑ ( a , b , x ) for b = 2 , a = 0.98 ⁒ ( .02 ) ⁒ 1.10 , x = 0 ⁒ ( .01 ) ⁒ 4 , 7D or 7S.

  • β–Ί
  • Slater (1960) tabulates M ⁑ ( a , b , x ) for a = 1 ⁒ ( .1 ) ⁒ 1 , b = 0.1 ⁒ ( .1 ) ⁒ 1 , and x = 0.1 ⁒ ( .1 ) ⁒ 10 , 7–9S; M ⁑ ( a , b , 1 ) for a = 11 ⁒ ( .2 ) ⁒ 2 and b = 4 ⁒ ( .2 ) ⁒ 1 , 7D; the smallest positive x -zero of M ⁑ ( a , b , x ) for a = 4 ⁒ ( .1 ) 0.1 and b = 0.1 ⁒ ( .1 ) ⁒ 2.5 , 7D.

  • β–Ί
  • Abramowitz and Stegun (1964, Chapter 13) tabulates M ⁑ ( a , b , x ) for a = 1 ⁒ ( .1 ) ⁒ 1 , b = 0.1 ⁒ ( .1 ) ⁒ 1 , and x = 0.1 ⁒ ( .1 ) ⁒ 1 ⁒ ( 1 ) ⁒ 10 , 8S. Also the smallest positive x -zero of M ⁑ ( a , b , x ) for a = 1 ⁒ ( .1 ) 0.1 and b = 0.1 ⁒ ( .1 ) ⁒ 1 , 7D.

  • β–Ί
  • Zhang and Jin (1996, pp. 411–423) tabulates M ⁑ ( a , b , x ) and U ⁑ ( a , b , x ) for a = 5 ⁒ ( .5 ) ⁒ 5 , b = 0.5 ⁒ ( .5 ) ⁒ 5 , and x = 0.1 , 1 , 5 , 10 , 20 , 30 , 8S (for M ⁑ ( a , b , x ) ) and 7S (for U ⁑ ( a , b , x ) ).

  • 9: Bibliography F
    β–Ί
  • S. Farid Khwaja and A. B. Olde Daalhuis (2014) Uniform asymptotic expansions for hypergeometric functions with large parameters IV. Anal. Appl. (Singap.) 12 (6), pp. 667–710.
  • β–Ί
  • FDLIBM (free C library)
  • β–Ί
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • β–Ί
  • J. L. Fields and J. Wimp (1961) Expansions of hypergeometric functions in hypergeometric functions. Math. Comp. 15 (76), pp. 390–395.
  • β–Ί
  • R. C. Forrey (1997) Computing the hypergeometric function. J. Comput. Phys. 137 (1), pp. 79–100.
  • 10: Bibliography V
    β–Ί
  • J. F. Van Diejen and V. P. Spiridonov (2001) Modular hypergeometric residue sums of elliptic Selberg integrals. Lett. Math. Phys. 58 (3), pp. 223–238.
  • β–Ί
  • R. VidΕ«nas (2005) Transformations of some Gauss hypergeometric functions. J. Comput. Appl. Math. 178 (1-2), pp. 473–487.
  • β–Ί
  • H. Volkmer and J. J. Wood (2014) A note on the asymptotic expansion of generalized hypergeometric functions. Anal. Appl. (Singap.) 12 (1), pp. 107–115.
  • β–Ί
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • β–Ί
  • H. Volkmer (2023) Asymptotic expansion of the generalized hypergeometric function F q p ⁒ ( z ) as z for p < q . Anal. Appl. (Singap.) 21 (2), pp. 535–545.