About the Project
NIST

hypergeometric functions

AdvancedHelp

(0.009 seconds)

1—10 of 220 matching pages

1: 15.2 Definitions and Analytical Properties
§15.2(i) Gauss Series
The hypergeometric function F ( a , b ; c ; z ) is defined by the Gauss series … … On the circle of convergence, | z | = 1 , the Gauss series: …
§15.2(ii) Analytic Properties
2: 17.1 Special Notation
§17.1 Special Notation
k , j , m , n , r , s nonnegative integers.
The main functions treated in this chapter are the basic hypergeometric (or q -hypergeometric) function ϕ s r ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) , the bilateral basic hypergeometric (or bilateral q -hypergeometric) function ψ s r ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) , and the q -analogs of the Appell functions Φ ( 1 ) ( a ; b , b ; c ; q ; x , y ) , Φ ( 2 ) ( a ; b , b ; c , c ; q ; x , y ) , Φ ( 3 ) ( a , a ; b , b ; c ; q ; x , y ) , and Φ ( 4 ) ( a , b ; c , c ; q ; x , y ) . Another function notation used is the ‘‘idem’’ function: …
3: 16.2 Definition and Analytic Properties
§16.2(i) Generalized Hypergeometric Series
Unless indicated otherwise it is assumed that in the DLMF generalized hypergeometric functions assume their principal values. …
Polynomials
§16.2(v) Behavior with Respect to Parameters
4: 35.8 Generalized Hypergeometric Functions of Matrix Argument
§35.8 Generalized Hypergeometric Functions of Matrix Argument
§35.8(i) Definition
Convergence Properties
Confluence
Invariance
5: 35.7 Gaussian Hypergeometric Function of Matrix Argument
§35.7 Gaussian Hypergeometric Function of Matrix Argument
§35.7(i) Definition
Jacobi Form
Confluent Form
Integral Representation
6: 35.6 Confluent Hypergeometric Functions of Matrix Argument
§35.6 Confluent Hypergeometric Functions of Matrix Argument
§35.6(i) Definitions
Laguerre Form
§35.6(ii) Properties
§35.6(iv) Asymptotic Approximations
7: 19.16 Definitions
§19.16(ii) R - a ( b ; z )
All elliptic integrals of the form (19.2.3) and many multiple integrals, including (19.16.3), are special cases of a multivariate hypergeometric function
19.16.8 R - a ( b ; z ) = R - a ( b 1 , , b n ; z 1 , , z n ) ,
§19.16(iii) Various Cases of R - a ( b ; z )
8: 15.18 Physical Applications
§15.18 Physical Applications
The hypergeometric function has allowed the development of “solvable” models for one-dimensional quantum scattering through and over barriers (Eckart (1930), Bhattacharjie and Sudarshan (1962)), and generalized to include position-dependent effective masses (Dekar et al. (1999)). …
9: 15.17 Mathematical Applications
§15.17 Mathematical Applications
§15.17(ii) Conformal Mappings
§15.17(v) Monodromy Groups
10: 16.26 Approximations
§16.26 Approximations
For discussions of the approximation of generalized hypergeometric functions and the Meijer G -function in terms of polynomials, rational functions, and Chebyshev polynomials see Luke (1975, §§5.12 - 5.13) and Luke (1977b, Chapters 1 and 9).