About the Project

hyperbolic functions

AdvancedHelp

(0.010 seconds)

11—20 of 143 matching pages

11: 4.34 Derivatives and Differential Equations
§4.34 Derivatives and Differential Equations
4.34.1 d d z sinh z = cosh z ,
4.34.2 d d z cosh z = sinh z ,
With a 0 , the general solutions of the differential equations …
12: 4.33 Maclaurin Series and Laurent Series
§4.33 Maclaurin Series and Laurent Series
4.33.1 sinh z = z + z 3 3 ! + z 5 5 ! + ,
4.33.2 cosh z = 1 + z 2 2 ! + z 4 4 ! + .
4.33.3 tanh z = z z 3 3 + 2 15 z 5 17 315 z 7 + + 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π .
13: 4.30 Elementary Properties
§4.30 Elementary Properties
Table 4.30.1: Hyperbolic functions: interrelations. …
sinh θ = a cosh θ = a tanh θ = a csch θ = a sech θ = a coth θ = a
14: 4.39 Continued Fractions
§4.39 Continued Fractions
4.39.1 tanh z = z 1 + z 2 3 + z 2 5 + z 2 7 + , z ± 1 2 π i , ± 3 2 π i , .
4.39.2 arcsinh z 1 + z 2 = z 1 + 1 2 z 2 3 + 1 2 z 2 5 + 3 4 z 2 7 + 3 4 z 2 9 + ,
4.39.3 arctanh z = z 1 z 2 3 4 z 2 5 9 z 2 7 ,
For these and other continued fractions involving inverse hyperbolic functions see Lorentzen and Waadeland (1992, pp. 569–571). …
15: 4.36 Infinite Products and Partial Fractions
§4.36 Infinite Products and Partial Fractions
4.36.1 sinh z = z n = 1 ( 1 + z 2 n 2 π 2 ) ,
4.36.2 cosh z = n = 1 ( 1 + 4 z 2 ( 2 n 1 ) 2 π 2 ) .
4.36.3 coth z = 1 z + 2 z n = 1 1 z 2 + n 2 π 2 ,
4.36.5 csch z = 1 z + 2 z n = 1 ( 1 ) n z 2 + n 2 π 2 .
16: 4.40 Integrals
§4.40 Integrals
§4.40(ii) Indefinite Integrals
§4.40(iii) Definite Integrals
§4.40(iv) Inverse Hyperbolic Functions
Extensive compendia of indefinite and definite integrals of hyperbolic functions include Apelblat (1983, pp. 96–109), Bierens de Haan (1939), Gröbner and Hofreiter (1949, pp. 139–160), Gröbner and Hofreiter (1950, pp. 160–167), Gradshteyn and Ryzhik (2000, Chapters 2–4), and Prudnikov et al. (1986a, §§1.4, 1.8, 2.4, 2.8).
17: 22.10 Maclaurin Series
22.10.7 sn ( z , k ) = tanh z k 2 4 ( z sinh z cosh z ) sech 2 z + O ( k 4 ) ,
22.10.8 cn ( z , k ) = sech z + k 2 4 ( z sinh z cosh z ) tanh z sech z + O ( k 4 ) ,
22.10.9 dn ( z , k ) = sech z + k 2 4 ( z + sinh z cosh z ) tanh z sech z + O ( k 4 ) .
18: 19.10 Relations to Other Functions
19: 28.23 Expansions in Series of Bessel Functions
28.23.2 me ν ( 0 , h 2 ) M ν ( j ) ( z , h ) = n = ( 1 ) n c 2 n ν ( h 2 ) 𝒞 ν + 2 n ( j ) ( 2 h cosh z ) ,
28.23.3 me ν ( 0 , h 2 ) M ν ( j ) ( z , h ) = i tanh z n = ( 1 ) n ( ν + 2 n ) c 2 n ν ( h 2 ) 𝒞 ν + 2 n ( j ) ( 2 h cosh z ) ,
28.23.6 Mc 2 m ( j ) ( z , h ) = ( 1 ) m ( ce 2 m ( 0 , h 2 ) ) 1 = 0 ( 1 ) A 2 2 m ( h 2 ) 𝒞 2 ( j ) ( 2 h cosh z ) ,
28.23.10 Ms 2 m + 1 ( j ) ( z , h ) = ( 1 ) m ( se 2 m + 1 ( 0 , h 2 ) ) 1 tanh z = 0 ( 1 ) ( 2 + 1 ) B 2 + 1 2 m + 1 ( h 2 ) 𝒞 2 + 1 ( j ) ( 2 h cosh z ) ,
28.23.12 Ms 2 m + 2 ( j ) ( z , h ) = ( 1 ) m ( se 2 m + 2 ( 0 , h 2 ) ) 1 tanh z = 0 ( 1 ) ( 2 + 2 ) B 2 + 2 2 m + 2 ( h 2 ) 𝒞 2 + 2 ( j ) ( 2 h cosh z ) ,
20: 4.21 Identities
4.21.37 sin z = sin x cosh y + i cos x sinh y ,
4.21.38 cos z = cos x cosh y i sin x sinh y ,
4.21.39 tan z = sin ( 2 x ) + i sinh ( 2 y ) cos ( 2 x ) + cosh ( 2 y ) ,
4.21.40 cot z = sin ( 2 x ) i sinh ( 2 y ) cosh ( 2 y ) cos ( 2 x ) .
4.21.41 | sin z | = ( sin 2 x + sinh 2 y ) 1 / 2 = ( 1 2 ( cosh ( 2 y ) cos ( 2 x ) ) ) 1 / 2 ,