About the Project

hyperbolic cases

AdvancedHelp

(0.002 seconds)

21—30 of 47 matching pages

21: Errata
  • Section 4.43

    The first paragraph has been rewritten to correct reported errors. The new version is reproduced here.

    Let p ( 0 ) and q be real constants and

    4.43.1
    A = ( 4 3 p ) 1 / 2 ,
    B = ( 4 3 p ) 1 / 2 .

    The roots of

    4.43.2 z 3 + p z + q = 0

    are:

    1. (a)

      A sin a , A sin ( a + 2 3 π ) , and A sin ( a + 4 3 π ) , with sin ( 3 a ) = 4 q / A 3 , when 4 p 3 + 27 q 2 0 .

    2. (b)

      A cosh a , A cosh ( a + 2 3 π i ) , and A cosh ( a + 4 3 π i ) , with cosh ( 3 a ) = 4 q / A 3 , when p < 0 , q < 0 , and 4 p 3 + 27 q 2 > 0 .

    3. (c)

      B sinh a , B sinh ( a + 2 3 π i ) , and B sinh ( a + 4 3 π i ) , with sinh ( 3 a ) = 4 q / B 3 , when p > 0 .

    Note that in Case (a) all the roots are real, whereas in Cases (b) and (c) there is one real root and a conjugate pair of complex roots. See also §1.11(iii).

    Reported 2014-10-31 by Masataka Urago.

  • 22: 19.17 Graphics
    The cases x = 0 or y = 0 correspond to the complete integrals. The case y = 1 corresponds to elementary functions. …
    See accompanying text
    Figure 19.17.8: R J ( 0 , y , 1 , p ) , 0 y 1 , 1 p 2 . …See (19.20.10), (19.20.11), and (19.20.8) for the cases p 0 ± , y 0 + , and y = 1 , respectively. Magnify 3D Help
    23: 6.2 Definitions and Interrelations
    As in the case of the logarithm (§4.2(i)) there is a cut along the interval ( , 0 ] and the principal value is two-valued on ( , 0 ) . … This is also true of the functions Ci ( z ) and Chi ( z ) defined in §6.2(ii). …
    Hyperbolic Analogs of the Sine and Cosine Integrals
    6.2.15 Shi ( z ) = 0 z sinh t t d t ,
    6.2.16 Chi ( z ) = γ + ln z + 0 z cosh t 1 t d t .
    24: 7.8 Inequalities
    7.8.7 sinh x 2 x < e x 2 F ( x ) = 0 x e t 2 d t < e x 2 1 x , x > 0 .
    7.8.8 erf x < 1 e 4 x 2 / π , x > 0 .
    25: 19.28 Integrals of Elliptic Integrals
    19.28.10 0 R F ( ( a c + b d ) 2 , ( a d + b c ) 2 , 4 a b c d cosh 2 z ) d z = 1 2 R F ( 0 , a 2 , b 2 ) R F ( 0 , c 2 , d 2 ) , a , b , c , d > 0 .
    26: 19.11 Addition Theorems
    In the case of θ , ϕ [ 0 , π / 2 ) and 0 k 2 α 2 < min ( 1 , ( 1 cos θ cos ϕ cos ψ ) 1 ) , we can use
    19.11.6_5 R C ( γ δ , γ ) = 1 δ arctan ( δ sin θ sin ϕ sin ψ α 2 1 α 2 cos θ cos ϕ cos ψ ) .
    §19.11(ii) Case ψ = π / 2
    27: 19.26 Addition Theorems
    19.26.11 R C ( x + λ , y + λ ) + R C ( x + μ , y + μ ) = R C ( x , y ) ,
    19.26.13 R C ( α 2 , α 2 θ ) + R C ( β 2 , β 2 θ ) = R C ( σ 2 , σ 2 θ ) , σ = ( α β + θ ) / ( α + β ) ,
    19.26.14 ( p y ) R C ( x , p ) + ( q y ) R C ( x , q ) = ( η ξ ) R C ( ξ , η ) , x 0 , y 0 ; p , q { 0 } ,
    §19.26(ii) Case x = 0
    19.26.25 R C ( x , y ) = 2 R C ( x + λ , y + λ ) , λ = y + 2 x y .
    28: 28.32 Mathematical Applications
    x = c cosh ξ cos η ,
    y = c sinh ξ sin η .
    defines a solution of Mathieu’s equation, provided that (in the case of an improper curve) the integral converges with respect to z uniformly on compact subsets of . …
    x 1 = 1 2 c ( cosh ( 2 α ) + cos ( 2 β ) cosh ( 2 γ ) ) ,
    x 2 = 2 c cosh α cos β sinh γ ,
    29: 19.22 Quadratic Transformations
    19.22.20 ( p ± 2 p 2 ) R J ( x 2 , y 2 , z 2 , p 2 ) = 2 ( p ± 2 a 2 ) R J ( a 2 , z + 2 , z 2 , p ± 2 ) 3 R F ( x 2 , y 2 , z 2 ) + 3 R C ( z 2 , p 2 ) ,
    19.22.22 R C ( x 2 , y 2 ) = R C ( a 2 , a y ) .
    Descending Gauss transformations include, as special cases, transformations of complete integrals into complete integrals; ascending Landen transformations do not. …
    30: 10.21 Zeros
    The zeros of any cylinder function or its derivative are simple, with the possible exceptions of z = 0 in the case of the functions, and z = 0 , ± ν in the case of the derivatives. … All of these zeros are simple, provided that ν 1 in the case of J ν ( z ) , and ν 1 2 in the case of Y ν ( z ) . … An error bound is included for the case ν 3 2 . … where, in the case of (10.21.48), …and, in the case of (10.21.49), …