About the Project

hyperbolic%20umbilic%20catastrophe

AdvancedHelp

(0.003 seconds)

1—10 of 230 matching pages

1: 4.37 Inverse Hyperbolic Functions
§4.37 Inverse Hyperbolic Functions
The principal values of the inverse hyperbolic cosecant, hyperbolic secant, and hyperbolic tangent are given by …
Inverse Hyperbolic Sine
Inverse Hyperbolic Cosine
Inverse Hyperbolic Tangent
2: 36.2 Catastrophes and Canonical Integrals
Normal Forms Associated with Canonical Integrals: Cuspoid Catastrophe with Codimension K
Normal Forms for Umbilic Catastrophes with Codimension K = 3
(hyperbolic umbilic).
Canonical Integrals
Diffraction Catastrophes
3: 36.4 Bifurcation Sets
Critical Points for Umbilics
Bifurcation (Catastrophe) Set for Umbilics
Hyperbolic umbilic bifurcation set (codimension three): … Hyperbolic umbilic cusp line (rib): …
§36.4(ii) Visualizations
4: 36.5 Stokes Sets
Stokes sets are surfaces (codimension one) in 𝐱 space, across which Ψ K ( 𝐱 ; k ) or Ψ ( U ) ( 𝐱 ; k ) acquires an exponentially-small asymptotic contribution (in k ), associated with a complex critical point of Φ K or Φ ( U ) . …
§36.5(iii) Umbilics
Elliptic Umbilic Stokes Set (Codimension three)
Hyperbolic Umbilic Stokes Set (Codimension three)
See accompanying text
Figure 36.5.5: Elliptic umbilic catastrophe with z = constant . … Magnify
5: 36.1 Special Notation
§36.1 Special Notation
The main functions covered in this chapter are cuspoid catastrophes Φ K ( t ; 𝐱 ) ; umbilic catastrophes with codimension three Φ ( E ) ( s , t ; 𝐱 ) , Φ ( H ) ( s , t ; 𝐱 ) ; canonical integrals Ψ K ( 𝐱 ) , Ψ ( E ) ( 𝐱 ) , Ψ ( H ) ( 𝐱 ) ; diffraction catastrophes Ψ K ( 𝐱 ; k ) , Ψ ( E ) ( 𝐱 ; k ) , Ψ ( H ) ( 𝐱 ; k ) generated by the catastrophes. …
6: 36.10 Differential Equations
In terms of the normal forms (36.2.2) and (36.2.3), the Ψ ( U ) ( 𝐱 ) satisfy the following operator equations …
36.10.14 3 ( 2 Ψ ( E ) x 2 2 Ψ ( E ) y 2 ) + 2 i z Ψ ( E ) x x Ψ ( E ) = 0 .
7: 36.3 Visualizations of Canonical Integrals
Figure 36.3.9: Modulus of hyperbolic umbilic canonical integral function | Ψ ( H ) ( x , y , 0 ) | .
Figure 36.3.10: Modulus of hyperbolic umbilic canonical integral function | Ψ ( H ) ( x , y , 1 ) | .
Figure 36.3.11: Modulus of hyperbolic umbilic canonical integral function | Ψ ( H ) ( x , y , 2 ) | .
Figure 36.3.12: Modulus of hyperbolic umbilic canonical integral function | Ψ ( H ) ( x , y , 3 ) | .
Figure 36.3.18: Phase of hyperbolic umbilic canonical integral ph Ψ ( H ) ( x , y , 0 ) .
8: 36.6 Scaling Relations
§36.6 Scaling Relations
Diffraction Catastrophe Scaling
Ψ ( U ) ( 𝐱 ; k ) = k β ( U ) Ψ ( U ) ( 𝐲 ( U ) ( k ) ) ,
Indices for k -Scaling of Magnitude of Ψ K or Ψ ( U ) (Singularity Index)
umbilics β ( U ) = 1 3 .
9: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • J. F. Nye (2006) Dislocation lines in the hyperbolic umbilic diffraction catastrophe. Proc. Roy. Soc. Lond. Ser. A 462, pp. 2299–2313.
  • J. F. Nye (2007) Dislocation lines in the swallowtail diffraction catastrophe. Proc. Roy. Soc. Lond. Ser. A 463, pp. 343–355.
  • 10: 36.11 Leading-Order Asymptotics
    §36.11 Leading-Order Asymptotics
    36.11.2 Ψ K ( 𝐱 ) = 2 π j = 1 j max ( 𝐱 ) exp ( i ( Φ K ( t j ( 𝐱 ) ; 𝐱 ) + 1 4 π ( 1 ) j + K + 1 ) ) | 2 Φ K ( t j ( 𝐱 ) ; 𝐱 ) t 2 | 1 / 2 ( 1 + o ( 1 ) ) .
    36.11.7 Ψ ( E ) ( 0 , 0 , z ) = π z ( i + 3 exp ( 4 27 i z 3 ) + o ( 1 ) ) , z ± ,
    36.11.8 Ψ ( H ) ( 0 , 0 , z ) = 2 π z ( 1 i 3 exp ( 1 27 i z 3 ) + o ( 1 ) ) , z ± .