About the Project

hyperbolic%20series%20for%20squares

AdvancedHelp

(0.004 seconds)

1—10 of 462 matching pages

1: 4.37 Inverse Hyperbolic Functions
§4.37 Inverse Hyperbolic Functions
The principal values of the inverse hyperbolic cosecant, hyperbolic secant, and hyperbolic tangent are given by …
Inverse Hyperbolic Sine
Inverse Hyperbolic Cosine
Inverse Hyperbolic Tangent
2: 36.2 Catastrophes and Canonical Integrals
Normal Forms for Umbilic Catastrophes with Codimension K = 3
(hyperbolic umbilic).
Canonical Integrals
36.2.27 Ψ ( H ) ( x , y , z ) = Ψ ( H ) ( y , x , z ) .
36.2.29 Ψ ( H ) ( 0 , 0 , z ) = Ψ ( H ) ( 0 , 0 , z ) ¯ = 2 1 / 3 3 exp ( 1 27 i z 3 ) Ψ ( E ) ( 0 , 0 , z 2 2 / 3 ) , < z < .
3: 4.35 Identities
§4.35 Identities
§4.35(i) Addition Formulas
§4.35(ii) Squares and Products
§4.35(iii) Multiples of the Argument
§4.35(iv) Real and Imaginary Parts; Moduli
4: 20 Theta Functions
Chapter 20 Theta Functions
5: 4.47 Approximations
§4.47 Approximations
§4.47(i) Chebyshev-Series Expansions
Clenshaw (1962) and Luke (1975, Chapter 3) give 20D coefficients for ln , exp , sin , cos , tan , cot , arcsin , arctan , arcsinh . … Hart et al. (1968) give ln , exp , sin , cos , tan , cot , arcsin , arccos , arctan , sinh , cosh , tanh , arcsinh , arccosh . … Luke (1975, Chapter 3) supplies real and complex approximations for ln , exp , sin , cos , tan , arctan , arcsinh . …
6: 4.33 Maclaurin Series and Laurent Series
§4.33 Maclaurin Series and Laurent Series
4.33.1 sinh z = z + z 3 3 ! + z 5 5 ! + ,
4.33.2 cosh z = 1 + z 2 2 ! + z 4 4 ! + .
4.33.3 tanh z = z z 3 3 + 2 15 z 5 17 315 z 7 + + 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π .
7: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • W. Magnus and S. Winkler (1966) Hill’s Equation. Interscience Tracts in Pure and Applied Mathematics, No. 20, Interscience Publishers John Wiley & Sons, New York-London-Sydney.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 8: Bibliography G
  • F. Gao and V. J. W. Guo (2013) Contiguous relations and summation and transformation formulae for basic hypergeometric series. J. Difference Equ. Appl. 19 (12), pp. 2029–2042.
  • L. Gårding (1947) The solution of Cauchy’s problem for two totally hyperbolic linear differential equations by means of Riesz integrals. Ann. of Math. (2) 48 (4), pp. 785–826.
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 9: 4.30 Elementary Properties
    §4.30 Elementary Properties
    Table 4.30.1: Hyperbolic functions: interrelations. All square roots have their principal values when the functions are real, nonnegative, and finite.
    sinh θ = a cosh θ = a tanh θ = a csch θ = a sech θ = a coth θ = a
    sinh θ a ( a 2 1 ) 1 / 2 a ( 1 a 2 ) 1 / 2 a 1 a 1 ( 1 a 2 ) 1 / 2 ( a 2 1 ) 1 / 2
    10: 22.10 Maclaurin Series
    §22.10 Maclaurin Series
    §22.10(i) Maclaurin Series in z
    §22.10(ii) Maclaurin Series in k and k
    22.10.8 cn ( z , k ) = sech z + k 2 4 ( z sinh z cosh z ) tanh z sech z + O ( k 4 ) ,