About the Project

hyperbolic trigonometric functions

AdvancedHelp

(0.006 seconds)

1—10 of 123 matching pages

1: 4.28 Definitions and Periodicity
4.28.4 tanh z = sinh z cosh z ,
Relations to Trigonometric Functions
4.28.9 cos ( i z ) = cosh z ,
Periodicity and Zeros
The functions sinh z and cosh z have period 2 π i , and tanh z has period π i . …
2: 4.35 Identities
4.35.26 sinh ( 2 z ) = 2 sinh z cosh z = 2 tanh z 1 tanh 2 z ,
4.35.34 sinh z = sinh x cos y + i cosh x sin y ,
4.35.35 cosh z = cosh x cos y + i sinh x sin y ,
4.35.36 tanh z = sinh ( 2 x ) + i sin ( 2 y ) cosh ( 2 x ) + cos ( 2 y ) ,
4.35.37 coth z = sinh ( 2 x ) i sin ( 2 y ) cosh ( 2 x ) cos ( 2 y ) .
3: 4.31 Special Values and Limits
4.31.1 lim z 0 sinh z z = 1 ,
4.31.2 lim z 0 tanh z z = 1 ,
4.31.3 lim z 0 cosh z 1 z 2 = 1 2 .
4: 4.32 Inequalities
4.32.1 cosh x ( sinh x x ) 3 ,
4.32.2 sin x cos x < tanh x < x , x > 0 ,
4.32.3 | cosh x cosh y | | x y | sinh x sinh y , x > 0 , y > 0 ,
4.32.4 arctan x 1 2 π tanh x , x 0 .
5: 4.1 Special Notation
k , m , n integers.
The main purpose of the present chapter is to extend these definitions and properties to complex arguments z . … ; the hyperbolic trigonometric (or just hyperbolic) functions sinh z , cosh z , tanh z , csch z , sech z , coth z ; the inverse hyperbolic functions arcsinh z , Arcsinh z , etc. …
6: 22.10 Maclaurin Series
22.10.7 sn ( z , k ) = tanh z k 2 4 ( z sinh z cosh z ) sech 2 z + O ( k 4 ) ,
22.10.8 cn ( z , k ) = sech z + k 2 4 ( z sinh z cosh z ) tanh z sech z + O ( k 4 ) ,
22.10.9 dn ( z , k ) = sech z + k 2 4 ( z + sinh z cosh z ) tanh z sech z + O ( k 4 ) .
7: 4.29 Graphics
The surfaces for the complex hyperbolic and inverse hyperbolic functions are similar to the surfaces depicted in §4.15(iii) for the trigonometric and inverse trigonometric functions. …
8: 4.34 Derivatives and Differential Equations
4.34.1 d d z sinh z = cosh z ,
4.34.2 d d z cosh z = sinh z ,
4.34.3 d d z tanh z = sech 2 z ,
4.34.4 d d z csch z = csch z coth z ,
9: 4.30 Elementary Properties
§4.30 Elementary Properties
Table 4.30.1: Hyperbolic functions: interrelations. All square roots have their principal values when the functions are real, nonnegative, and finite.
sinh θ = a cosh θ = a tanh θ = a csch θ = a sech θ = a coth θ = a
sinh θ a ( a 2 1 ) 1 / 2 a ( 1 a 2 ) 1 / 2 a 1 a 1 ( 1 a 2 ) 1 / 2 ( a 2 1 ) 1 / 2
10: 19.10 Relations to Other Functions