About the Project

hyperbolic tangent function

AdvancedHelp

(0.004 seconds)

1—10 of 56 matching pages

1: 4.32 Inequalities
4.32.2 sin x cos x < tanh x < x , x > 0 ,
4.32.4 arctan x 1 2 π tanh x , x 0 .
2: 4.1 Special Notation
k , m , n integers.
; the hyperbolic trigonometric (or just hyperbolic) functions sinh z , cosh z , tanh z , csch z , sech z , coth z ; the inverse hyperbolic functions arcsinh z , Arcsinh z , etc. …
3: 4.31 Special Values and Limits
4.31.2 lim z 0 tanh z z = 1 ,
4: 4.29 Graphics
§4.29(i) Real Arguments
See accompanying text
Figure 4.29.3: tanh x and coth x . Magnify
§4.29(ii) Complex Arguments
The conformal mapping w = sinh z is obtainable from Figure 4.15.7 by rotating both the w -plane and the z -plane through an angle 1 2 π , compare (4.28.8). The surfaces for the complex hyperbolic and inverse hyperbolic functions are similar to the surfaces depicted in §4.15(iii) for the trigonometric and inverse trigonometric functions. …
5: 22.10 Maclaurin Series
22.10.7 sn ( z , k ) = tanh z k 2 4 ( z sinh z cosh z ) sech 2 z + O ( k 4 ) ,
22.10.8 cn ( z , k ) = sech z + k 2 4 ( z sinh z cosh z ) tanh z sech z + O ( k 4 ) ,
22.10.9 dn ( z , k ) = sech z + k 2 4 ( z + sinh z cosh z ) tanh z sech z + O ( k 4 ) .
6: 4.35 Identities
4.35.12 sech 2 z = 1 tanh 2 z ,
4.35.22 tanh z 2 = ( cosh z 1 cosh z + 1 ) 1 / 2 = cosh z 1 sinh z = sinh z cosh z + 1 .
4.35.26 sinh ( 2 z ) = 2 sinh z cosh z = 2 tanh z 1 tanh 2 z ,
4.35.36 tanh z = sinh ( 2 x ) + i sin ( 2 y ) cosh ( 2 x ) + cos ( 2 y ) ,
4.35.40 | tanh z | = ( cosh ( 2 x ) cos ( 2 y ) cosh ( 2 x ) + cos ( 2 y ) ) 1 / 2 .
7: 4.28 Definitions and Periodicity
4.28.4 tanh z = sinh z cosh z ,
4.28.7 coth z = 1 tanh z .
4.28.10 tan ( i z ) = i tanh z ,
The functions sinh z and cosh z have period 2 π i , and tanh z has period π i . …
8: 4.34 Derivatives and Differential Equations
4.34.3 d d z tanh z = sech 2 z ,
4.34.5 d d z sech z = sech z tanh z ,
9: 4.37 Inverse Hyperbolic Functions
4.37.6 Arccoth z = Arctanh ( 1 / z ) .
Each is two-valued on the corresponding cut(s), and each is real on the part of the real axis that remains after deleting the intersections with the corresponding cuts. …
4.37.9 arccoth z = arctanh ( 1 / z ) , z ± 1 .
4.37.28 z = tanh w ,
10: 4.30 Elementary Properties
§4.30 Elementary Properties
Table 4.30.1: Hyperbolic functions: interrelations. All square roots have their principal values when the functions are real, nonnegative, and finite.
sinh θ = a cosh θ = a tanh θ = a csch θ = a sech θ = a coth θ = a
tanh θ a ( 1 + a 2 ) 1 / 2 a 1 ( a 2 1 ) 1 / 2 a ( 1 + a 2 ) 1 / 2 ( 1 a 2 ) 1 / 2 a 1