About the Project

hyperbolic cotangent function

AdvancedHelp

(0.003 seconds)

1—10 of 34 matching pages

1: 4.1 Special Notation
k , m , n integers.
; the hyperbolic trigonometric (or just hyperbolic) functions sinh z , cosh z , tanh z , csch z , sech z , coth z ; the inverse hyperbolic functions arcsinh z , Arcsinh z , etc. …
2: 4.31 Special Values and Limits
§4.31 Special Values and Limits
Table 4.31.1: Hyperbolic functions: values at multiples of 1 2 π i .
z 0 1 2 π i π i 3 2 π i
4.31.1 lim z 0 sinh z z = 1 ,
4.31.2 lim z 0 tanh z z = 1 ,
3: 4.34 Derivatives and Differential Equations
4.34.4 d d z csch z = csch z coth z ,
4.34.6 d d z coth z = csch 2 z .
4.34.14 w = ( 1 / a ) coth ( a z + c ) ,
4: 4.28 Definitions and Periodicity
4.28.7 coth z = 1 tanh z .
4.28.13 cot ( i z ) = i coth z .
5: 4.30 Elementary Properties
§4.30 Elementary Properties
Table 4.30.1: Hyperbolic functions: interrelations. All square roots have their principal values when the functions are real, nonnegative, and finite.
sinh θ = a cosh θ = a tanh θ = a csch θ = a sech θ = a coth θ = a
coth θ a 1 ( a 2 + 1 ) 1 / 2 a ( a 2 1 ) 1 / 2 a 1 ( 1 + a 2 ) 1 / 2 ( 1 a 2 ) 1 / 2 a
6: 4.29 Graphics
§4.29(i) Real Arguments
See accompanying text
Figure 4.29.3: tanh x and coth x . Magnify
§4.29(ii) Complex Arguments
The conformal mapping w = sinh z is obtainable from Figure 4.15.7 by rotating both the w -plane and the z -plane through an angle 1 2 π , compare (4.28.8). The surfaces for the complex hyperbolic and inverse hyperbolic functions are similar to the surfaces depicted in §4.15(iii) for the trigonometric and inverse trigonometric functions. …
7: 13.24 Series
13.24.3 exp ( 1 2 z ( coth t 1 t ) ) ( t sinh t ) 1 2 μ = s = 0 p s ( μ ) ( z ) ( t z ) s .
8: 4.35 Identities
4.35.4 coth ( u ± v ) = ± coth u coth v + 1 coth u ± coth v .
4.35.10 coth u ± coth v = sinh ( v ± u ) sinh u sinh v .
4.35.13 csch 2 z = coth 2 z 1 .
4.35.37 coth z = sinh ( 2 x ) i sin ( 2 y ) cosh ( 2 x ) cos ( 2 y ) .
9: 14.19 Toroidal (or Ring) Functions
10: 4.37 Inverse Hyperbolic Functions
4.37.6 Arccoth z = Arctanh ( 1 / z ) .
4.37.9 arccoth z = arctanh ( 1 / z ) , z ± 1 .
4.37.15 arccoth ( z ) = arccoth z , z ± 1 .
For the corresponding results for arccsch z , arcsech z , and arccoth z , use (4.37.7)–(4.37.9); compare §4.23(iv). …