About the Project

hyperbolic cosine function

AdvancedHelp

(0.006 seconds)

1—10 of 105 matching pages

1: 4.35 Identities
4.35.34 sinh z = sinh x cos y + i cosh x sin y ,
4.35.35 cosh z = cosh x cos y + i sinh x sin y ,
4.35.36 tanh z = sinh ( 2 x ) + i sin ( 2 y ) cosh ( 2 x ) + cos ( 2 y ) ,
4.35.39 | cosh z | = ( sinh 2 x + cos 2 y ) 1 / 2 = ( 1 2 ( cosh ( 2 x ) + cos ( 2 y ) ) ) 1 / 2 ,
4.35.40 | tanh z | = ( cosh ( 2 x ) cos ( 2 y ) cosh ( 2 x ) + cos ( 2 y ) ) 1 / 2 .
2: 4.28 Definitions and Periodicity
4.28.2 cosh z = e z + e z 2 ,
4.28.3 cosh z ± sinh z = e ± z ,
4.28.4 tanh z = sinh z cosh z ,
4.28.6 sech z = 1 cosh z ,
4.28.9 cos ( i z ) = cosh z ,
3: 4.32 Inequalities
4.32.1 cosh x ( sinh x x ) 3 ,
4.32.2 sin x cos x < tanh x < x , x > 0 ,
4.32.3 | cosh x cosh y | | x y | sinh x sinh y , x > 0 , y > 0 ,
4: 4.1 Special Notation
k , m , n integers.
; the hyperbolic trigonometric (or just hyperbolic) functions sinh z , cosh z , tanh z , csch z , sech z , coth z ; the inverse hyperbolic functions arcsinh z , Arcsinh z , etc. …
5: 4.31 Special Values and Limits
4.31.3 lim z 0 cosh z 1 z 2 = 1 2 .
6: 19.10 Relations to Other Functions
7: 22.10 Maclaurin Series
22.10.7 sn ( z , k ) = tanh z k 2 4 ( z sinh z cosh z ) sech 2 z + O ( k 4 ) ,
22.10.8 cn ( z , k ) = sech z + k 2 4 ( z sinh z cosh z ) tanh z sech z + O ( k 4 ) ,
22.10.9 dn ( z , k ) = sech z + k 2 4 ( z + sinh z cosh z ) tanh z sech z + O ( k 4 ) .
8: 4.21 Identities
4.21.37 sin z = sin x cosh y + i cos x sinh y ,
4.21.38 cos z = cos x cosh y i sin x sinh y ,
4.21.39 tan z = sin ( 2 x ) + i sinh ( 2 y ) cos ( 2 x ) + cosh ( 2 y ) ,
4.21.41 | sin z | = ( sin 2 x + sinh 2 y ) 1 / 2 = ( 1 2 ( cosh ( 2 y ) cos ( 2 x ) ) ) 1 / 2 ,
4.21.42 | cos z | = ( cos 2 x + sinh 2 y ) 1 / 2 = ( 1 2 ( cosh ( 2 y ) + cos ( 2 x ) ) ) 1 / 2 ,
9: 4.18 Inequalities
4.18.5 | sinh y | | sin z | cosh y ,
4.18.6 | sinh y | | cos z | cosh y ,
4.18.8 | cos z | cosh | z | ,
10: 28.23 Expansions in Series of Bessel Functions
28.23.2 me ν ( 0 , h 2 ) M ν ( j ) ( z , h ) = n = ( 1 ) n c 2 n ν ( h 2 ) 𝒞 ν + 2 n ( j ) ( 2 h cosh z ) ,
28.23.3 me ν ( 0 , h 2 ) M ν ( j ) ( z , h ) = i tanh z n = ( 1 ) n ( ν + 2 n ) c 2 n ν ( h 2 ) 𝒞 ν + 2 n ( j ) ( 2 h cosh z ) ,
28.23.6 Mc 2 m ( j ) ( z , h ) = ( 1 ) m ( ce 2 m ( 0 , h 2 ) ) 1 = 0 ( 1 ) A 2 2 m ( h 2 ) 𝒞 2 ( j ) ( 2 h cosh z ) ,
28.23.8 Mc 2 m + 1 ( j ) ( z , h ) = ( 1 ) m ( ce 2 m + 1 ( 0 , h 2 ) ) 1 = 0 ( 1 ) A 2 + 1 2 m + 1 ( h 2 ) 𝒞 2 + 1 ( j ) ( 2 h cosh z ) ,
28.23.10 Ms 2 m + 1 ( j ) ( z , h ) = ( 1 ) m ( se 2 m + 1 ( 0 , h 2 ) ) 1 tanh z = 0 ( 1 ) ( 2 + 1 ) B 2 + 1 2 m + 1 ( h 2 ) 𝒞 2 + 1 ( j ) ( 2 h cosh z ) ,