About the Project

homogeneous%20harmonic%20polynomials

AdvancedHelp

(0.004 seconds)

1—10 of 342 matching pages

1: 14.30 Spherical and Spheroidal Harmonics
§14.30 Spherical and Spheroidal Harmonics
β–Ίβ–ΊIn general, spherical harmonics are defined as the class of homogeneous harmonic polynomials. See Andrews et al. (1999, Chapter 9). … β–Ί
2: 31.5 Solutions Analytic at Three Singularities: Heun Polynomials
§31.5 Solutions Analytic at Three Singularities: Heun Polynomials
β–Ί
31.5.2 𝐻𝑝 n , m ⁑ ( a , q n , m ; n , Ξ² , Ξ³ , Ξ΄ ; z ) = H ⁒ β„“ ⁑ ( a , q n , m ; n , Ξ² , Ξ³ , Ξ΄ ; z )
β–Ίis a polynomial of degree n , and hence a solution of (31.2.1) that is analytic at all three finite singularities 0 , 1 , a . These solutions are the Heun polynomials. …
3: 35.4 Partitions and Zonal Polynomials
§35.4 Partitions and Zonal Polynomials
β–Ί
Normalization
β–Ί
Orthogonal Invariance
β–Ί
Summation
β–Ί
Mean-Value
4: 24.1 Special Notation
β–Ί
Bernoulli Numbers and Polynomials
β–ΊThe origin of the notation B n , B n ⁑ ( x ) , is not clear. … β–Ί
Euler Numbers and Polynomials
β–ΊThe notations E n , E n ⁑ ( x ) , as defined in §24.2(ii), were used in Lucas (1891) and Nörlund (1924). …
5: 18.3 Definitions
§18.3 Definitions
β–ΊFor expressions of ultraspherical, Chebyshev, and Legendre polynomials in terms of Jacobi polynomials, see §18.7(i). …For explicit power series coefficients up to n = 12 for these polynomials and for coefficients up to n = 6 for Jacobi and ultraspherical polynomials see Abramowitz and Stegun (1964, pp. 793–801). … β–Ί
Bessel polynomials
β–ΊBessel polynomials are often included among the classical OP’s. …
6: Bibliography G
β–Ί
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • β–Ί
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • β–Ί
  • A. Gil and J. Segura (2003) Computing the zeros and turning points of solutions of second order homogeneous linear ODEs. SIAM J. Numer. Anal. 41 (3), pp. 827–855.
  • β–Ί
  • S. G. Gindikin (1964) Analysis in homogeneous domains. Uspehi Mat. Nauk 19 (4 (118)), pp. 3–92 (Russian).
  • β–Ί
  • Ya. I. GranovskiΔ­, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 7: Bibliography F
    β–Ί
  • FDLIBM (free C library)
  • β–Ί
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • β–Ί
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • β–Ί
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • β–Ί
  • R. Fuchs (1907) Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen. Math. Ann. 63 (3), pp. 301–321.
  • 8: 20 Theta Functions
    Chapter 20 Theta Functions
    9: Bibliography M
    β–Ί
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • β–Ί
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • β–Ί
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • β–Ί
  • J. C. P. Miller (1950) On the choice of standard solutions for a homogeneous linear differential equation of the second order. Quart. J. Mech. Appl. Math. 3 (2), pp. 225–235.
  • β–Ί
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 10: 3.8 Nonlinear Equations
    β–ΊThe polynomialβ–ΊFor describing the distribution of complex zeros of solutions of linear homogeneous second-order differential equations by methods based on the Liouville–Green (WKB) approximation, see Segura (2013). … β–Ί
    Example. Wilkinson’s Polynomial
    β–ΊConsider x = 20 and j = 19 . We have p ⁑ ( 20 ) = 19 ! and a 19 = 1 + 2 + β‹― + 20 = 210 . …