About the Project

higher-order 3nj symbols

AdvancedHelp

(0.002 seconds)

1—10 of 619 matching pages

1: 34.11 Higher-Order 3 n j Symbols
§34.11 Higher-Order 3 n j Symbols
For information on 12 j , 15 j ,…, symbols, see Varshalovich et al. (1988, §10.12) and Yutsis et al. (1962, pp. 62–65 and 122–153).
2: 34.2 Definition: 3 j Symbol
§34.2 Definition: 3 j Symbol
The quantities j 1 , j 2 , j 3 in the 3 j symbol are called angular momenta. …They therefore satisfy the triangle conditions …The corresponding projective quantum numbers m 1 , m 2 , m 3 are given by … When both conditions are satisfied the 3 j symbol can be expressed as the finite sum …
3: Bibliography Q
  • F. Qi and J. Mei (1999) Some inequalities of the incomplete gamma and related functions. Z. Anal. Anwendungen 18 (3), pp. 793–799.
  • S.-L. Qiu and M. K. Vamanamurthy (1996) Sharp estimates for complete elliptic integrals. SIAM J. Math. Anal. 27 (3), pp. 823–834.
  • C. Quesne (2011) Higher-Order SUSY, Exactly Solvable Potentials, and Exceptional Orthogonal Polynomials. Modern Physics Letters A 26, pp. 1843–1852.
  • 4: 24.14 Sums
    §24.14(i) Quadratic Recurrence Relations
    §24.14(ii) Higher-Order Recurrence Relations
    24.14.10 ( 2 n ) ! ( 2 j ) ! ( 2 k ) ! ( 2 ) ! ( 2 m ) ! B 2 j B 2 k B 2 B 2 m = ( 2 n + 3 3 ) B 2 n 4 3 n 2 ( 2 n 1 ) B 2 n 2 .
    These identities can be regarded as higher-order recurrences. …
    5: 34.4 Definition: 6 j Symbol
    §34.4 Definition: 6 j Symbol
    The 6 j symbol is defined by the following double sum of products of 3 j symbols: …where the summation is taken over all admissible values of the m ’s and m ’s for each of the four 3 j symbols; compare (34.2.2) and (34.2.3). Except in degenerate cases the combination of the triangle inequalities for the four 3 j symbols in (34.4.1) is equivalent to the existence of a tetrahedron (possibly degenerate) with edges of lengths j 1 , j 2 , j 3 , l 1 , l 2 , l 3 ; see Figure 34.4.1. … where F 3 4 is defined as in §16.2. …
    6: 34.6 Definition: 9 j Symbol
    §34.6 Definition: 9 j Symbol
    The 9 j symbol may be defined either in terms of 3 j symbols or equivalently in terms of 6 j symbols:
    34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  m r s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
    34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 j ( 2 j + 1 ) { j 11 j 21 j 31 j 32 j 33 j } { j 12 j 22 j 32 j 21 j j 23 } { j 13 j 23 j 33 j j 11 j 12 } .
    The 9 j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
    7: Bibliography O
  • K. Okamoto (1981) On the τ -function of the Painlevé equations. Phys. D 2 (3), pp. 525–535.
  • S. Okui (1974) Complete elliptic integrals resulting from infinite integrals of Bessel functions. J. Res. Nat. Bur. Standards Sect. B 78B (3), pp. 113–135.
  • A. B. Olde Daalhuis and F. W. J. Olver (1995b) On the calculation of Stokes multipliers for linear differential equations of the second order. Methods Appl. Anal. 2 (3), pp. 348–367.
  • A. B. Olde Daalhuis (1998a) Hyperasymptotic solutions of higher order linear differential equations with a singularity of rank one. Proc. Roy. Soc. London Ser. A 454, pp. 1–29.
  • A. B. Olde Daalhuis (2004b) On higher-order Stokes phenomena of an inhomogeneous linear ordinary differential equation. J. Comput. Appl. Math. 169 (1), pp. 235–246.
  • 8: 24.16 Generalizations
    §24.16(i) Higher-Order Analogs
    Also for = 1 , 2 , 3 , , …
    24.16.6 n ! b n = 1 n 1 B n ( n 1 ) , n = 2 , 3 , .
    Let χ 0 be the trivial character and χ 4 the unique (nontrivial) character with f = 4 ; that is, χ 4 ( 1 ) = 1 , χ 4 ( 3 ) = 1 , χ 4 ( 2 ) = χ 4 ( 4 ) = 0 . … In no particular order, other generalizations include: Bernoulli numbers and polynomials with arbitrary complex index (Butzer et al. (1992)); Euler numbers and polynomials with arbitrary complex index (Butzer et al. (1994)); q-analogs (Carlitz (1954a), Andrews and Foata (1980)); conjugate Bernoulli and Euler polynomials (Hauss (1997, 1998)); Bernoulli–Hurwitz numbers (Katz (1975)); poly-Bernoulli numbers (Kaneko (1997)); Universal Bernoulli numbers (Clarke (1989)); p -adic integer order Bernoulli numbers (Adelberg (1996)); p -adic q -Bernoulli numbers (Kim and Kim (1999)); periodic Bernoulli numbers (Berndt (1975b)); cotangent numbers (Girstmair (1990b)); Bernoulli–Carlitz numbers (Goss (1978)); Bernoulli–Padé numbers (Dilcher (2002)); Bernoulli numbers belonging to periodic functions (Urbanowicz (1988)); cyclotomic Bernoulli numbers (Girstmair (1990a)); modified Bernoulli numbers (Zagier (1998)); higher-order Bernoulli and Euler polynomials with multiple parameters (Erdélyi et al. (1953a, §§1.13.1, 1.14.1)).
    9: Bibliography H
  • P. I. Hadži (1972) Certain sums that contain cylindrical functions. Bul. Akad. Štiince RSS Moldoven. 1972 (3), pp. 75–77, 94 (Russian).
  • E. Hille (1929) Note on some hypergeometric series of higher order. J. London Math. Soc. 4, pp. 50–54.
  • C. J. Howls, P. J. Langman, and A. B. Olde Daalhuis (2004) On the higher-order Stokes phenomenon. Proc. Roy. Soc. London Ser. A 460, pp. 2285–2303.
  • J. H. Hubbard and B. B. Hubbard (2002) Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach. 2nd edition, Prentice Hall Inc., Upper Saddle River, NJ.
  • M. N. Huxley (2003) Exponential sums and lattice points. III. Proc. London Math. Soc. (3) 87 (3), pp. 591–609.
  • 10: 17.8 Special Cases of ψ r r Functions
    17.8.1 n = ( z ) n q n ( n 1 ) / 2 = ( q , z , q / z ; q ) ;
    17.8.3 n = ( 1 ) n q n ( 3 n 1 ) / 2 z 3 n ( 1 + z q n ) = ( q , z , q / z ; q ) ( q z 2 , q / z 2 ; q 2 ) .
    Apart from Jacobi’s triple product identity (17.8.1) and the quintuple product identity (17.8.3) (see Cooper (2006) for a review), there also exist higher-order tuple product identities. …
    17.8.5 ψ 3 3 ( b , c , d q / b , q / c , q / d ; q , q b c d ) = ( q , q / ( b c ) , q / ( b d ) , q / ( c d ) ; q ) ( q / b , q / c , q / d , q / ( b c d ) ; q ) , | q | < | b c d | ,
    17.8.6 ψ 4 4 ( q a 1 2 , b , c , d a 1 2 , a q / b , a q / c , a q / d ; q , q a 3 2 b c d ) = ( a q , a q / ( b c ) , a q / ( b d ) , a q / ( c d ) , q a 1 2 / b , q a 1 2 / c , q a 1 2 / d , q , q / a ; q ) ( a q / b , a q / c , a q / d , q / b , q / c , q / d , q a 1 2 , q a 1 2 , q a 3 2 / ( b c d ) ; q ) , | q a 3 2 | < | b c d | ,