About the Project

half argument

AdvancedHelp

(0.001 seconds)

11—20 of 22 matching pages

11: 34.2 Definition: 3 ⁒ j Symbol
β–ΊEither all of them are nonnegative integers, or one is a nonnegative integer and the other two are half-odd positive integers. … β–Ί
34.2.1 | j r j s | j t j r + j s ,
β–Ί
34.2.2 m r = j r , j r + 1 , , j r 1 , j r , r = 1 , 2 , 3 ,
β–Ίand the summation is over all nonnegative integers s such that the arguments in the factorials are nonnegative. … β–ΊFor alternative expressions for the 3 ⁒ j symbol, written either as a finite sum or as other terminating generalized hypergeometric series F 2 3 of unit argument, see Varshalovich et al. (1988, §§8.21, 8.24–8.26).
12: 34.6 Definition: 9 ⁒ j Symbol
β–Ί
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  ⁒ m r ⁒ s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ⁒ ( j 21 j 22 j 23 m 21 m 22 m 23 ) ⁒ ( j 31 j 32 j 33 m 31 m 32 m 33 ) ⁒ ( j 11 j 21 j 31 m 11 m 21 m 31 ) ⁒ ( j 12 j 22 j 32 m 12 m 22 m 32 ) ⁒ ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
β–Ί
34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 ⁒ j ⁒ ( 2 ⁒ j + 1 ) ⁒ { j 11 j 21 j 31 j 32 j 33 j } ⁒ { j 12 j 22 j 32 j 21 j j 23 } ⁒ { j 13 j 23 j 33 j j 11 j 12 } .
β–ΊThe 9 ⁒ j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
13: 34.7 Basic Properties: 9 ⁒ j Symbol
β–Ί
34.7.1 { j 11 j 12 j 13 j 21 j 22 j 13 j 31 j 31 0 } = ( 1 ) j 12 + j 21 + j 13 + j 31 ( ( 2 ⁒ j 13 + 1 ) ⁒ ( 2 ⁒ j 31 + 1 ) ) 1 2 ⁒ { j 11 j 12 j 13 j 22 j 21 j 31 } .
β–ΊOdd permutations of columns or rows introduce a phase factor ( 1 ) R , where R is the sum of all arguments of the 9 ⁒ j symbol. … β–Ί
34.7.2 j 12 ⁒ j 34 ( 2 ⁒ j 12 + 1 ) ⁒ ( 2 ⁒ j 34 + 1 ) ⁒ ( 2 ⁒ j 13 + 1 ) ⁒ ( 2 ⁒ j 24 + 1 ) ⁒ { j 1 j 2 j 12 j 3 j 4 j 34 j 13 j 24 j } ⁒ { j 1 j 2 j 12 j 3 j 4 j 34 j 13 j 24 j } = δ j 13 , j 13 ⁒ δ j 24 , j 24 .
β–Ί
34.7.3 j 13 ⁒ j 24 ( 1 ) 2 ⁒ j 2 + j 24 + j 23 j 34 ⁒ ( 2 ⁒ j 13 + 1 ) ⁒ ( 2 ⁒ j 24 + 1 ) ⁒ { j 1 j 2 j 12 j 3 j 4 j 34 j 13 j 24 j } ⁒ { j 1 j 3 j 13 j 4 j 2 j 24 j 14 j 23 j } = { j 1 j 2 j 12 j 4 j 3 j 34 j 14 j 23 j } .
β–Ί
34.7.5 j ( 2 ⁒ j + 1 ) ⁒ { j 11 j 12 j j 21 j 22 j 23 j 31 j 32 j 33 } ⁒ { j 11 j 12 j j 23 j 33 j } = ( 1 ) 2 ⁒ j ⁒ { j 21 j 22 j 23 j 12 j j 32 } ⁒ { j 31 j 32 j 33 j j 11 j 21 } .
14: 34.4 Definition: 6 ⁒ j Symbol
β–Ί
34.4.1 { j 1 j 2 j 3 l 1 l 2 l 3 } = m r ⁒ m s ( 1 ) l 1 + m 1 + l 2 + m 2 + l 3 + m 3 ⁒ ( j 1 j 2 j 3 m 1 m 2 m 3 ) ⁒ ( j 1 l 2 l 3 m 1 m 2 m 3 ) ⁒ ( l 1 j 2 l 3 m 1 m 2 m 3 ) ⁒ ( l 1 l 2 j 3 m 1 m 2 m 3 ) ,
β–Ί
34.4.2 { j 1 j 2 j 3 l 1 l 2 l 3 } = Ξ” ⁑ ( j 1 ⁒ j 2 ⁒ j 3 ) ⁒ Ξ” ⁑ ( j 1 ⁒ l 2 ⁒ l 3 ) ⁒ Ξ” ⁑ ( l 1 ⁒ j 2 ⁒ l 3 ) ⁒ Ξ” ⁑ ( l 1 ⁒ l 2 ⁒ j 3 ) ⁒ s ( 1 ) s ⁒ ( s + 1 ) ! ( s j 1 j 2 j 3 ) ! ⁒ ( s j 1 l 2 l 3 ) ! ⁒ ( s l 1 j 2 l 3 ) ! ⁒ ( s l 1 l 2 j 3 ) ! ⁒ 1 ( j 1 + j 2 + l 1 + l 2 s ) ! ⁒ ( j 2 + j 3 + l 2 + l 3 s ) ! ⁒ ( j 3 + j 1 + l 3 + l 1 s ) ! ,
β–Ίwhere the summation is over all nonnegative integers s such that the arguments in the factorials are nonnegative. … β–Ί
34.4.3 { j 1 j 2 j 3 l 1 l 2 l 3 } = ( 1 ) j 1 + j 3 + l 1 + l 3 ⁒ Ξ” ⁑ ( j 1 ⁒ j 2 ⁒ j 3 ) ⁒ Ξ” ⁑ ( j 2 ⁒ l 1 ⁒ l 3 ) ⁒ ( j 1 j 2 + l 1 + l 2 ) ! ⁒ ( j 2 + j 3 + l 2 + l 3 ) ! ⁒ ( j 1 + j 3 + l 1 + l 3 + 1 ) ! Ξ” ⁑ ( j 1 ⁒ l 2 ⁒ l 3 ) ⁒ Ξ” ⁑ ( j 3 ⁒ l 1 ⁒ l 2 ) ⁒ ( j 1 j 2 + j 3 ) ! ⁒ ( j 2 + l 1 + l 3 ) ! ⁒ ( j 1 + l 2 + l 3 + 1 ) ! ⁒ ( j 3 + l 1 + l 2 + 1 ) ! ⁒ F 3 4 ⁑ ( j 1 + j 2 j 3 , j 2 l 1 l 3 , j 1 l 2 l 3 1 , j 3 l 1 l 2 1 j 1 + j 2 l 1 l 2 , j 2 j 3 l 2 l 3 , j 1 j 3 l 1 l 3 1 ; 1 ) ,
β–ΊFor alternative expressions for the 6 ⁒ j symbol, written either as a finite sum or as other terminating generalized hypergeometric series F 3 4 of unit argument, see Varshalovich et al. (1988, §§9.2.1, 9.2.3).
15: 19.23 Integral Representations
β–Ί
19.23.6 4 ⁒ Ο€ ⁒ R F ⁑ ( x , y , z ) = 0 2 ⁒ Ο€ 0 Ο€ sin ⁑ ΞΈ ⁒ d ΞΈ ⁒ d Ο• ( x ⁒ sin 2 ⁑ ΞΈ ⁒ cos 2 ⁑ Ο• + y ⁒ sin 2 ⁑ ΞΈ ⁒ sin 2 ⁑ Ο• + z ⁒ cos 2 ⁑ ΞΈ ) 1 / 2 ,
β–Ί
19.23.6_5 R G ⁑ ( x , y , z ) = 1 4 ⁒ Ο€ ⁒ 0 2 ⁒ Ο€ 0 Ο€ ( x ⁒ sin 2 ⁑ ΞΈ ⁒ cos 2 ⁑ Ο• + y ⁒ sin 2 ⁑ ΞΈ ⁒ sin 2 ⁑ Ο• + z ⁒ cos 2 ⁑ ΞΈ ) 1 / 2 ⁒ sin ⁑ ΞΈ ⁒ d ΞΈ ⁒ d Ο• ,
β–Ί
19.23.9 R a ⁑ ( 𝐛 ; 𝐳 ) = 4 ⁒ Ξ“ ⁑ ( b 1 + b 2 + b 3 ) Ξ“ ⁑ ( b 1 ) ⁒ Ξ“ ⁑ ( b 2 ) ⁒ Ξ“ ⁑ ( b 3 ) ⁒ 0 Ο€ / 2 0 Ο€ / 2 ( j = 1 3 z j ⁒ l j 2 ) a ⁒ j = 1 3 l j 2 ⁒ b j 1 ⁒ sin ⁑ ΞΈ ⁒ d ΞΈ ⁒ d Ο• , b j > 0 , ⁑ z j > 0 .
β–Ί
19.23.10 R a ⁑ ( 𝐛 ; 𝐳 ) = 1 B ⁑ ( a , a ) ⁒ 0 1 u a 1 ⁒ ( 1 u ) a 1 ⁒ j = 1 n ( 1 u + u ⁒ z j ) b j ⁒ d u , a , a > 0 ; a + a = j = 1 n b j ; z j β„‚ βˆ– ( , 0 ] .
16: 15.19 Methods of Computation
β–ΊFor z ℝ it is always possible to apply one of the linear transformations in §15.8(i) in such a way that the hypergeometric function is expressed in terms of hypergeometric functions with an argument in the interval [ 0 , 1 2 ] . β–ΊFor z β„‚ it is possible to use the linear transformations in such a way that the new arguments lie within the unit circle, except when z = e ± Ο€ ⁒ i / 3 . This is because the linear transformations map the pair { e Ο€ ⁒ i / 3 , e Ο€ ⁒ i / 3 } onto itself. … β–ΊFor example, in the half-plane ⁑ z 1 2 we can use (15.12.2) or (15.12.3) to compute F ⁑ ( a , b ; c + N + 1 ; z ) and F ⁑ ( a , b ; c + N ; z ) , where N is a large positive integer, and then apply (15.5.18) in the backward direction. …
17: 19.16 Definitions
β–Ί
19.16.9 R a ⁑ ( 𝐛 ; 𝐳 ) = 1 B ⁑ ( a , a ) ⁒ 0 t a 1 ⁒ j = 1 n ( t + z j ) b j ⁒ d t = 1 B ⁑ ( a , a ) ⁒ 0 t a 1 ⁒ j = 1 n ( 1 + t ⁒ z j ) b j ⁒ d t , b 1 + β‹― + b n > a > 0 , b j ℝ , z j β„‚ βˆ– ( , 0 ] ,
β–Ί
19.16.12 R a ⁑ ( b 1 , , b 4 ; c 1 , c k 2 , c , c Ξ± 2 ) = 2 ⁒ ( sin 2 ⁑ Ο• ) 1 a B ⁑ ( a , a ) ⁒ 0 Ο• ( sin ⁑ ΞΈ ) 2 ⁒ a 1 ⁒ ( sin 2 ⁑ Ο• sin 2 ⁑ ΞΈ ) a 1 ⁒ ( cos ⁑ ΞΈ ) 1 2 ⁒ b 1 ⁒ ( 1 k 2 ⁒ sin 2 ⁑ ΞΈ ) b 2 ⁒ ( 1 Ξ± 2 ⁒ sin 2 ⁑ ΞΈ ) b 4 ⁒ d ΞΈ ,
β–Ί R a ⁑ ( 𝐛 ; 𝐳 ) is an elliptic integral iff the z ’s are distinct and exactly four of the parameters a , a , b 1 , , b n are half-odd-integers, the rest are integers, and none of a , a , a + a is zero or a negative integer. …
18: Bibliography P
β–Ί
  • B. V. Paltsev (1999) On two-sided estimates, uniform with respect to the real argument and index, for modified Bessel functions. Mat. Zametki 65 (5), pp. 681–692 (Russian).
  • β–Ί
  • R. B. Paris (2004) Exactification of the method of steepest descents: The Bessel functions of large order and argument. Proc. Roy. Soc. London Ser. A 460, pp. 2737–2759.
  • β–Ί
  • S. Paszkowski (1991) Evaluation of the Fermi-Dirac integral of half-integer order. Zastos. Mat. 21 (2), pp. 289–301.
  • 19: Bibliography G
    β–Ί
  • W. Gautschi (1965) Algorithm 259: Legendre functions for arguments larger than one. Comm. ACM 8 (8), pp. 488–492.
  • β–Ί
  • W. Gautschi (2016) Algorithm 957: evaluation of the repeated integral of the coerror function by half-range Gauss-Hermite quadrature. ACM Trans. Math. Softw. 42 (1), pp. 9:1–9:10.
  • β–Ί
  • A. Gervois and H. Navelet (1984) Some integrals involving three Bessel functions when their arguments satisfy the triangle inequalities. J. Math. Phys. 25 (11), pp. 3350–3356.
  • β–Ί
  • A. Gil and J. Segura (1997) Evaluation of Legendre functions of argument greater than one. Comput. Phys. Comm. 105 (2-3), pp. 273–283.
  • β–Ί
  • A. Gil, J. Segura, and N. M. Temme (2004a) Algorithm 831: Modified Bessel functions of imaginary order and positive argument. ACM Trans. Math. Software 30 (2), pp. 159–164.
  • 20: 4.37 Inverse Hyperbolic Functions
    β–ΊGraphs of the principal values for real arguments are given in §4.29. This section also indicates conformal mappings, and surface plots for complex arguments. … β–Ί
    4.37.17 arcsinh ⁑ ( i ⁒ y ) = 1 2 ⁒ Ο€ ⁒ i ± ln ⁑ ( ( y 2 1 ) 1 / 2 + y ) , y [ 1 , ) ,
    β–Ί
    4.37.22 arccosh ⁑ x = ± ln ⁑ ( i ⁒ ( 1 x 2 ) 1 / 2 + x ) , x ( 1 , 1 ] ,
    β–Ί