About the Project

geometric

AdvancedHelp

(0.001 seconds)

11—20 of 27 matching pages

11: 23.22 Methods of Computation
  • (a)

    In the general case, given by c d 0 , we compute the roots α , β , γ , say, of the cubic equation 4 t 3 c t d = 0 ; see §1.11(iii). These roots are necessarily distinct and represent e 1 , e 2 , e 3 in some order.

    If c and d are real, and the discriminant is positive, that is c 3 27 d 2 > 0 , then e 1 , e 2 , e 3 can be identified via (23.5.1), and k 2 , k 2 obtained from (23.6.16).

    If c 3 27 d 2 < 0 , or c and d are not both real, then we label α , β , γ so that the triangle with vertices α , β , γ is positively oriented and [ α , γ ] is its longest side (chosen arbitrarily if there is more than one). In particular, if α , β , γ are collinear, then we label them so that β is on the line segment ( α , γ ) . In consequence, k 2 = ( β γ ) / ( α γ ) , k 2 = ( α β ) / ( α γ ) satisfy k 2 0 k 2 (with strict inequality unless α , β , γ are collinear); also | k 2 | , | k 2 | 1 .

    Finally, on taking the principal square roots of k 2 and k 2 we obtain values for k and k that lie in the 1st and 4th quadrants, respectively, and 2 ω 1 , 2 ω 3 are given by

    23.22.1 2 ω 1 M ( 1 , k ) = 2 i ω 3 M ( 1 , k ) = π 3 c ( 2 + k 2 k 2 ) ( k 2 k 2 ) d ( 1 k 2 k 2 ) ,

    where M denotes the arithmetic-geometric mean (see §§19.8(i) and 22.20(ii)). This process yields 2 possible pairs ( 2 ω 1 , 2 ω 3 ), corresponding to the 2 possible choices of the square root.

  • 12: 4.10 Integrals
    13: 27.7 Lambert Series as Generating Functions
    If | x | < 1 , then the quotient x n / ( 1 x n ) is the sum of a geometric series, and when the series (27.7.1) converges absolutely it can be rearranged as a power series: …
    14: 3.8 Nonlinear Equations
    3.8.3 | z n + 1 ζ | < A | z n ζ | p
    If p = 1 and A < 1 , then the convergence is said to be linear or geometric. … …
    15: 27.4 Euler Products and Dirichlet Series
    If f ( n ) is completely multiplicative, then each factor in the product is a geometric series and the Euler product becomes …
    16: 19.33 Triaxial Ellipsoids
    For additional geometrical properties of ellipsoids (and ellipses), see Carlson (1964, p. 417). …
    17: 22.8 Addition Theorems
    A geometric interpretation of (22.8.20) analogous to that of (23.10.5) is given in Whittaker and Watson (1927, p. 530). … Greenhill (1959, pp. 121–130) reviews these results in terms of the geometric poristic polygon constructions of Poncelet. …
    18: 23.20 Mathematical Applications
    The geometric nature of this construction is illustrated in McKean and Moll (1999, §2.14), Koblitz (1993, §§6, 7), and Silverman and Tate (1992, Chapter 1, §§3, 4): each of these references makes a connection with the addition theorem (23.10.1). …
    19: Bibliography B
  • E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its, and V. B. Matveev (1994) Algebro-geometric Approach to Nonlinear Integrable Problems. Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin.
  • M. V. Berry (1980) Some Geometric Aspects of Wave Motion: Wavefront Dislocations, Diffraction Catastrophes, Diffractals. In Geometry of the Laplace Operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Vol. 36, pp. 13–28.
  • 20: Bibliography C
  • D. A. Cox (1984) The arithmetic-geometric mean of Gauss. Enseign. Math. (2) 30 (3-4), pp. 275–330.
  • D. A. Cox (1985) Gauss and the arithmetic-geometric mean. Notices Amer. Math. Soc. 32 (2), pp. 147–151.