About the Project

generating function

AdvancedHelp

(0.003 seconds)

11—20 of 58 matching pages

11: 26.6 Other Lattice Path Numbers
§26.6(ii) Generating Functions
For sufficiently small | x | and | y | , …
26.6.6 n = 0 D ( n , n ) x n = 1 1 6 x + x 2 ,
26.6.7 n = 0 M ( n ) x n = 1 x 1 2 x 3 x 2 2 x 2 ,
26.6.8 n , k = 1 N ( n , k ) x n y k = 1 x x y ( 1 x x y ) 2 4 x 2 y 2 x ,
12: 26.7 Set Partitions: Bell Numbers
§26.7(ii) Generating Function
13: 26.3 Lattice Paths: Binomial Coefficients
§26.3(ii) Generating Functions
14: 14.7 Integer Degree and Order
§14.7(iv) Generating Functions
For other generating functions see Magnus et al. (1966, pp. 232–233) and Rainville (1960, pp. 163–165, 168, 170–171, 184). …
15: 34.7 Basic Properties: 9 j Symbol
§34.7(v) Generating Functions
For generating functions for the 9 j symbol see Biedenharn and van Dam (1965, p. 258, eq. (4.37)). …
16: 27.7 Lambert Series as Generating Functions
§27.7 Lambert Series as Generating Functions
17: 24.2 Definitions and Generating Functions
§24.2 Definitions and Generating Functions
( 1 ) n + 1 B 2 n > 0 , n = 1 , 2 , .
§24.2(ii) Euler Numbers and Polynomials
( 1 ) n E 2 n > 0 .
18: 27.14 Unrestricted Partitions
§27.14(ii) Generating Functions and Recursions
as a generating function for the function p ( n ) defined in §27.14(i):
27.14.3 1 f ( x ) = n = 0 p ( n ) x n ,
Logarithmic differentiation of the generating function 1 / f ( x ) leads to another recursion: … For further information on partitions and generating functions see Andrews (1976); also §§17.217.14, and §§26.926.10. …
19: 26.14 Permutations: Order Notation
§26.14(ii) Generating Functions
20: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
§26.4(ii) Generating Function