About the Project

generalized hypergeometric series

AdvancedHelp

(0.006 seconds)

11—20 of 65 matching pages

11: 18.5 Explicit Representations
§18.5(iii) Finite Power Series, the Hypergeometric Function, and Generalized Hypergeometric Functions
12: 16.25 Methods of Computation
§16.25 Methods of Computation
Methods for computing the functions of the present chapter include power series, asymptotic expansions, integral representations, differential equations, and recurrence relations. They are similar to those described for confluent hypergeometric functions, and hypergeometric functions in §§13.29 and 15.19. …
13: 13.12 Products
13.12.1 M ( a , b , z ) M ( a , b , z ) + a ( a b ) z 2 b 2 ( 1 b 2 ) M ( 1 + a , 2 + b , z ) M ( 1 a , 2 b , z ) = 1 .
For generalizations of this quadratic relation see Majima et al. (2000). For integral representations, integrals, and series containing products of M ( a , b , z ) and U ( a , b , z ) see Erdélyi et al. (1953a, §6.15.3).
14: Howard S. Cohl
Cohl has published papers in orthogonal polynomials and special functions, and is particularly interested in fundamental solutions of linear partial differential equations on Riemannian manifolds, associated Legendre functions, generalized and basic hypergeometric functions, eigenfunction expansions of fundamental solutions in separable coordinate systems for linear partial differential equations, orthogonal polynomial generating function and generalized expansions, and q -series. …
15: 16.5 Integral Representations and Integrals
In this event, the formal power-series expansion of the left-hand side (obtained from (16.2.1)) is the asymptotic expansion of the right-hand side as z 0 in the sector | ph ( z ) | ( p + 1 q δ ) π / 2 , where δ is an arbitrary small positive constant. …
16: Bibliography V
  • H. Van de Vel (1969) On the series expansion method for computing incomplete elliptic integrals of the first and second kinds. Math. Comp. 23 (105), pp. 61–69.
  • R. S. Varma (1941) An infinite series of Weber’s parabolic cylinder functions. Proc. Benares Math. Soc. (N.S.) 3, pp. 37.
  • H. Volkmer and J. J. Wood (2014) A note on the asymptotic expansion of generalized hypergeometric functions. Anal. Appl. (Singap.) 12 (1), pp. 107–115.
  • H. Volkmer (2021) Fourier series representation of Ferrers function 𝖯 .
  • H. Volkmer (2023) Asymptotic expansion of the generalized hypergeometric function F q p ( z ) as z for p < q . Anal. Appl. (Singap.) 21 (2), pp. 535–545.
  • 17: 34.13 Methods of Computation
    Methods of computation for 3 j and 6 j symbols include recursion relations, see Schulten and Gordon (1975a), Luscombe and Luban (1998), and Edmonds (1974, pp. 42–45, 48–51, 97–99); summation of single-sum expressions for these symbols, see Varshalovich et al. (1988, §§8.2.6, 9.2.1) and Fang and Shriner (1992); evaluation of the generalized hypergeometric functions of unit argument that represent these symbols, see Srinivasa Rao and Venkatesh (1978) and Srinivasa Rao (1981). For 9 j symbols, methods include evaluation of the single-sum series (34.6.2), see Fang and Shriner (1992); evaluation of triple-sum series, see Varshalovich et al. (1988, §10.2.1) and Srinivasa Rao et al. (1989). …
    18: Bibliography K
  • H. Ki and Y. Kim (2000) On the zeros of some generalized hypergeometric functions. J. Math. Anal. Appl. 243 (2), pp. 249–260.
  • U. J. Knottnerus (1960) Approximation Formulae for Generalized Hypergeometric Functions for Large Values of the Parameters. J. B. Wolters, Groningen.
  • T. H. Koornwinder (2015) Fractional integral and generalized Stieltjes transforms for hypergeometric functions as transmutation operators. SIGMA Symmetry Integrability Geom. Methods Appl. 11, pp. Paper 074, 22.
  • C. Krattenthaler (1993) HYP and HYPQ. Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q -binomial sums and basic hypergeometric series. Séminaire Lotharingien de Combinatoire 30, pp. 61–76.
  • E. D. Krupnikov and K. S. Kölbig (1997) Some special cases of the generalized hypergeometric function F q q + 1 . J. Comput. Appl. Math. 78 (1), pp. 79–95.
  • 19: 35.10 Methods of Computation
    §35.10 Methods of Computation
    See Yan (1992) for the F 1 1 and F 1 2 functions of matrix argument in the case m = 2 , and Bingham et al. (1992) for Monte Carlo simulation on 𝐎 ( m ) applied to a generalization of the integral (35.5.8). Koev and Edelman (2006) utilizes combinatorial identities for the zonal polynomials to develop computational algorithms for approximating the series expansion (35.8.1). …
    20: 14.15 Uniform Asymptotic Approximations
    In other words, the convergent hypergeometric series expansions of 𝖯 ν μ ( ± x ) are also generalized (and uniform) asymptotic expansions as μ , with scale 1 / Γ ( j + 1 + μ ) , j = 0 , 1 , 2 , ; compare §2.1(v). …