About the Project

generalized hypergeometric differential equation

AdvancedHelp

(0.012 seconds)

11—20 of 55 matching pages

11: Bibliography V
  • N. Virchenko and I. Fedotova (2001) Generalized Associated Legendre Functions and their Applications. World Scientific Publishing Co. Inc., Singapore.
  • H. Volkmer and J. J. Wood (2014) A note on the asymptotic expansion of generalized hypergeometric functions. Anal. Appl. (Singap.) 12 (1), pp. 107–115.
  • H. Volkmer (2008) Approximation of eigenvalues of some differential equations by zeros of orthogonal polynomials. J. Comput. Appl. Math. 213 (2), pp. 488–500.
  • H. Volkmer (2023) Asymptotic expansion of the generalized hypergeometric function F q p ( z ) as z for p < q . Anal. Appl. (Singap.) 21 (2), pp. 535–545.
  • A. P. Vorob’ev (1965) On the rational solutions of the second Painlevé equation. Differ. Uravn. 1 (1), pp. 79–81 (Russian).
  • 12: Bibliography B
  • W. N. Bailey (1928) Products of generalized hypergeometric series. Proc. London Math. Soc. (2) 28 (2), pp. 242–254.
  • W. N. Bailey (1929) Transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 29 (2), pp. 495–502.
  • W. N. Bailey (1964) Generalized Hypergeometric Series. Stechert-Hafner, Inc., New York.
  • W. Bühring (1992) Generalized hypergeometric functions at unit argument. Proc. Amer. Math. Soc. 114 (1), pp. 145–153.
  • J. C. Butcher (1987) The Numerical Analysis of Ordinary Differential Equations. Runge-Kutta and General Linear Methods. John Wiley & Sons Ltd., Chichester.
  • 13: Bibliography O
  • A. B. Olde Daalhuis and F. W. J. Olver (1995a) Hyperasymptotic solutions of second-order linear differential equations. I. Methods Appl. Anal. 2 (2), pp. 173–197.
  • A. B. Olde Daalhuis and F. W. J. Olver (1995b) On the calculation of Stokes multipliers for linear differential equations of the second order. Methods Appl. Anal. 2 (3), pp. 348–367.
  • F. W. J. Olver (1977c) Second-order differential equations with fractional transition points. Trans. Amer. Math. Soc. 226, pp. 227–241.
  • F. W. J. Olver (1993a) Exponentially-improved asymptotic solutions of ordinary differential equations I: The confluent hypergeometric function. SIAM J. Math. Anal. 24 (3), pp. 756–767.
  • P. J. Olver (1993b) Applications of Lie Groups to Differential Equations. 2nd edition, Graduate Texts in Mathematics, Vol. 107, Springer-Verlag, New York.
  • 14: 15.17 Mathematical Applications
    §15.17(i) Differential Equations
    The logarithmic derivatives of some hypergeometric functions for which quadratic transformations exist (§15.8(iii)) are solutions of Painlevé equations. … … Harmonic analysis can be developed for the Jacobi transform either as a generalization of the Fourier-cosine transform (§1.14(ii)) or as a specialization of a group Fourier transform. … These monodromy groups are finite iff the solutions of Riemann’s differential equation are all algebraic. …
    15: Bibliography N
  • J. Negro, L. M. Nieto, and O. Rosas-Ortiz (2000) Confluent hypergeometric equations and related solvable potentials in quantum mechanics. J. Math. Phys. 41 (12), pp. 7964–7996.
  • J. J. Nestor (1984) Uniform Asymptotic Approximations of Solutions of Second-order Linear Differential Equations, with a Coalescing Simple Turning Point and Simple Pole. Ph.D. Thesis, University of Maryland, College Park, MD.
  • V. A. Noonburg (1995) A separating surface for the Painlevé differential equation x ′′ = x 2 t . J. Math. Anal. Appl. 193 (3), pp. 817–831.
  • L. N. Nosova and S. A. Tumarkin (1965) Tables of Generalized Airy Functions for the Asymptotic Solution of the Differential Equations ϵ ( p y ) + ( q + ϵ r ) y = f . Pergamon Press, Oxford.
  • V. Yu. Novokshënov (1985) The asymptotic behavior of the general real solution of the third Painlevé equation. Dokl. Akad. Nauk SSSR 283 (5), pp. 1161–1165 (Russian).
  • 16: 35.7 Gaussian Hypergeometric Function of Matrix Argument
    §35.7 Gaussian Hypergeometric Function of Matrix Argument
    §35.7(iii) Partial Differential Equations
    Subject to the conditions (a)–(c), the function f ( 𝐓 ) = F 1 2 ( a , b ; c ; 𝐓 ) is the unique solution of each partial differential equationSystems of partial differential equations for the F 1 0 (defined in §35.8) and F 1 1 functions of matrix argument can be obtained by applying (35.8.9) and (35.8.10) to (35.7.9). …
    17: 18.34 Bessel Polynomials
    §18.34(i) Definitions and Recurrence Relation
    For the confluent hypergeometric function F 1 1 and the generalized hypergeometric function F 0 2 , the Laguerre polynomial L n ( α ) and the Whittaker function W κ , μ see §16.2(ii), §16.2(iv), (18.5.12), and (13.14.3), respectively. … Often only the polynomials (18.34.2) are called Bessel polynomials, while the polynomials (18.34.1) and (18.34.3) are called generalized Bessel polynomials. … See Ismail (2009, (4.10.9)) for orthogonality on the unit circle for general values of a .
    §18.34(iii) Other Properties
    18: 32.10 Special Function Solutions
    For certain combinations of the parameters, P II P VI  have particular solutions expressible in terms of the solution of a Riccati differential equation, which can be solved in terms of special functions defined in other chapters. …
    §32.10(iv) Fourth Painlevé Equation
    §32.10(vi) Sixth Painlevé Equation
    where the fundamental periods 2 ϕ 1 and 2 ϕ 2 are linearly independent functions satisfying the hypergeometric equation
    19: Bibliography M
  • A. P. Magnus (1995) Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials. J. Comput. Appl. Math. 57 (1-2), pp. 215–237.
  • R. S. Maier (2005) On reducing the Heun equation to the hypergeometric equation. J. Differential Equations 213 (1), pp. 171–203.
  • A. R. Miller (1997) A class of generalized hypergeometric summations. J. Comput. Appl. Math. 87 (1), pp. 79–85.
  • A. R. Miller (2003) On a Kummer-type transformation for the generalized hypergeometric function F 2 2 . J. Comput. Appl. Math. 157 (2), pp. 507–509.
  • J. C. P. Miller (1950) On the choice of standard solutions for a homogeneous linear differential equation of the second order. Quart. J. Mech. Appl. Math. 3 (2), pp. 225–235.
  • 20: 18.39 Applications in the Physical Sciences
    These eigenfunctions are the orthonormal eigenfunctions of the time-independent Schrödinger equationThe finite system of functions ψ n is orthonormal in L 2 ( , d x ) , see (18.34.7_3). … The Schrödinger equation with potential …
    Other Analytically Solved Schrödinger Equations
    Substitution of (18.39.24) into (18.39.23) then gives the ordinary differential equation for the radial wave function R n , l ( r ) , …