About the Project

generalized exponential integrals

AdvancedHelp

(0.013 seconds)

21—30 of 118 matching pages

21: Bibliography M
  • G. F. Miller (1960) Tables of Generalized Exponential Integrals. NPL Mathematical Tables, Vol. III, Her Majesty’s Stationery Office, London.
  • 22: 9.13 Generalized Airy Functions
    9.13.27 B k ( z , p ) = k t p exp ( z t 1 3 t 3 ) d t , k = 1 , 2 , 3 , p = 0 , ± 1 , ± 2 , ,
    A 2 ( z , 0 ) = e 2 π i / 3 Ai ( z e 2 π i / 3 ) ,
    A 3 ( z , 0 ) = e 2 π i / 3 Ai ( z e 2 π i / 3 ) ,
    A 2 ( z , p ) = e 2 ( p 1 ) π i / 3 A 1 ( z e 2 π i / 3 , p ) ,
    A 3 ( z , p ) = e 2 ( p 1 ) π i / 3 A 1 ( z e 2 π i / 3 , p ) .
    23: 8.21 Generalized Sine and Cosine Integrals
    8.21.1 ci ( a , z ) ± i si ( a , z ) = e ± 1 2 π i a Γ ( a , z e 1 2 π i ) ,
    8.21.2 Ci ( a , z ) ± i Si ( a , z ) = e ± 1 2 π i a γ ( a , z e 1 2 π i ) .
    24: 7.16 Generalized Error Functions
    Generalizations of the error function and Dawson’s integral are 0 x e t p d t and 0 x e t p d t . …
    25: 6 Exponential, Logarithmic, Sine, and
    Cosine Integrals
    Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals
    26: 4.7 Derivatives and Differential Equations
    For a nonvanishing analytic function f ( z ) , the general solution of the differential equation …
    §4.7(ii) Exponentials and Powers
    When a z is a general power, ln a is replaced by the branch of Ln a used in constructing a z . … The general solution of the differential equation … The general solution of the differential equation …
    27: 5.9 Integral Representations
    5.9.10 Ln Γ ( z ) = ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) + 2 0 arctan ( t / z ) e 2 π t 1 d t ,
    5.9.10_1 Ln Γ ( z ) = ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) z π 0 ln ( 1 e 2 π t ) t 2 + z 2 d t ,
    5.9.10_2 Ln Γ ( z ) = ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) + 0 e z t ( 1 e t 1 1 t + 1 2 ) d t t ,
    28: 35.6 Confluent Hypergeometric Functions of Matrix Argument
    29: 16.5 Integral Representations and Integrals
    30: 35.8 Generalized Hypergeometric Functions of Matrix Argument