About the Project

generalized%20Mehler%E2%80%93Fock%20transformation

AdvancedHelp

(0.004 seconds)

1—10 of 514 matching pages

1: 8.19 Generalized Exponential Integral
§8.19 Generalized Exponential Integral
§8.19(ii) Graphics
§8.19(ix) Inequalities
§8.19(x) Integrals
§8.19(xi) Further Generalizations
2: 16.2 Definition and Analytic Properties
§16.2(i) Generalized Hypergeometric Series
Polynomials
Note also that any partial sum of the generalized hypergeometric series can be represented as a generalized hypergeometric function via …
§16.2(v) Behavior with Respect to Parameters
3: 8.21 Generalized Sine and Cosine Integrals
§8.21 Generalized Sine and Cosine Integrals
§8.21(i) Definitions: General Values
§8.21(iv) Interrelations
§8.21(v) Special Values
4: 1.16 Distributions
Λ : 𝒟 ( I ) is called a distribution, or generalized function, if it is a continuous linear functional on 𝒟 ( I ) , that is, it is a linear functional and for every ϕ n ϕ in 𝒟 ( I ) , … More generally, for α : [ a , b ] [ , ] a nondecreasing function the corresponding Lebesgue–Stieltjes measure μ α (see §1.4(v)) can be considered as a distribution: … More generally, if α ( x ) is an infinitely differentiable function, then … Then its Fourier transform is … Friedman (1990) gives an overview of generalized functions and their relation to distributions. …
5: 35.8 Generalized Hypergeometric Functions of Matrix Argument
§35.8 Generalized Hypergeometric Functions of Matrix Argument
Kummer Transformation
Thomae Transformation
§35.8(iv) General Properties
Laplace Transform
6: 19.2 Definitions
§19.2(i) General Elliptic Integrals
§19.2(iii) Bulirsch’s Integrals
Bulirsch’s integrals are linear combinations of Legendre’s integrals that are chosen to facilitate computational application of Bartky’s transformation (Bartky (1938)). …
7: 20 Theta Functions
Chapter 20 Theta Functions
8: 14.31 Other Applications
§14.31(ii) Conical Functions
These functions are also used in the MehlerFock integral transform14.20(vi)) for problems in potential and heat theory, and in elementary particle physics (Sneddon (1972, Chapter 7) and Braaksma and Meulenbeld (1967)). The conical functions and MehlerFock transform generalize to Jacobi functions and the Jacobi transform; see Koornwinder (1984a) and references therein. …
9: 1.14 Integral Transforms
§1.14 Integral Transforms
§1.14(i) Fourier Transform
§1.14(iii) Laplace Transform
Fourier Transform
Laplace Transform
10: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • §8.26(iv) Generalized Exponential Integral
  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.