About the Project

generalized Bessel polynomials

AdvancedHelp

(0.008 seconds)

1—10 of 52 matching pages

1: 18.34 Bessel Polynomials
β–Ί
§18.34(i) Definitions and Recurrence Relation
β–Ί
18.34.1 y n ⁑ ( x ; a ) = F 0 2 ⁑ ( n , n + a 1 ; x 2 ) = ( n + a 1 ) n ⁒ ( x 2 ) n ⁒ F 1 1 ⁑ ( n 2 ⁒ n a + 2 ; 2 x ) = n ! ⁒ ( 1 2 ⁒ x ) n ⁒ L n ( 1 a 2 ⁒ n ) ⁑ ( 2 ⁒ x 1 ) = ( 1 2 ⁒ x ) 1 1 2 ⁒ a ⁒ e 1 / x ⁒ W 1 1 2 ⁒ a , 1 2 ⁒ ( a 1 ) + n ⁑ ( 2 ⁒ x 1 ) .
β–ΊOften only the polynomials (18.34.2) are called Bessel polynomials, while the polynomials (18.34.1) and (18.34.3) are called generalized Bessel polynomials. Sometimes the polynomials ΞΈ n ⁑ ( x ; a , b ) are called reverse Bessel polynomials. … β–Ί
18.34.7_1 Ο• n ⁒ ( x ; Ξ» ) = e Ξ» ⁒ e x ⁒ ( 2 ⁒ Ξ» ⁒ e x ) Ξ» 1 2 ⁒ y n ⁑ ( Ξ» 1 ⁒ e x ; 2 2 ⁒ Ξ» ) / n ! = ( 1 ) n ⁒ e Ξ» ⁒ e x ⁒ ( 2 ⁒ Ξ» ⁒ e x ) Ξ» n 1 2 ⁒ L n ( 2 ⁒ Ξ» 2 ⁒ n 1 ) ⁑ ( 2 ⁒ Ξ» ⁒ e x ) = ( 2 ⁒ Ξ» ) 1 2 ⁒ e x / 2 ⁒ W Ξ» , n + 1 2 Ξ» ⁑ ( 2 ⁒ Ξ» ⁒ e x ) / n ! , n = 0 , 1 , , N = Ξ» 3 2 , Ξ» > 1 2 ,
2: Bibliography D
β–Ί
  • M. G. de Bruin, E. B. Saff, and R. S. Varga (1981a) On the zeros of generalized Bessel polynomials. I. Nederl. Akad. Wetensch. Indag. Math. 84 (1), pp. 1–13.
  • β–Ί
  • M. G. de Bruin, E. B. Saff, and R. S. Varga (1981b) On the zeros of generalized Bessel polynomials. II. Nederl. Akad. Wetensch. Indag. Math. 84 (1), pp. 14–25.
  • β–Ί
  • T. M. Dunster (2001c) Uniform asymptotic expansions for the reverse generalized Bessel polynomials, and related functions. SIAM J. Math. Anal. 32 (5), pp. 987–1013.
  • 3: Bibliography W
    β–Ί
  • R. Wong and J.-M. Zhang (1997) Asymptotic expansions of the generalized Bessel polynomials. J. Comput. Appl. Math. 85 (1), pp. 87–112.
  • 4: 18.15 Asymptotic Approximations
    β–Ί
    18.15.19 L n ( α ) ⁑ ( ν ⁒ x ) = e 1 2 ⁒ ν ⁒ x 2 α ⁒ x 1 2 ⁒ α + 1 4 ⁒ ( 1 x ) 1 4 ⁒ ( ξ 1 2 ⁒ J α ⁑ ( ν ⁒ ξ ) ⁒ m = 0 M 1 A m ⁑ ( ξ ) ν 2 ⁒ m + ξ 1 2 ⁒ J α + 1 ⁑ ( ν ⁒ ξ ) ⁒ m = 0 M 1 B m ⁑ ( ξ ) ν 2 ⁒ m + 1 + ξ 1 2 ⁒ env ⁑ J α ⁑ ( ν ⁒ ξ ) ⁒ O ⁑ ( 1 ν 2 ⁒ M 1 ) ) ,
    5: Bibliography L
    β–Ί
  • J. L. López and N. M. Temme (1999b) Hermite polynomials in asymptotic representations of generalized Bernoulli, Euler, Bessel, and Buchholz polynomials. J. Math. Anal. Appl. 239 (2), pp. 457–477.
  • 6: 35.9 Applications
    §35.9 Applications
    β–ΊIn multivariate statistical analysis based on the multivariate normal distribution, the probability density functions of many random matrices are expressible in terms of generalized hypergeometric functions of matrix argument F q p , with p 2 and q 1 . … β–ΊThese references all use results related to the integral formulas (35.4.7) and (35.5.8). … β–ΊIn chemistry, Wei and Eichinger (1993) expresses the probability density functions of macromolecules in terms of generalized hypergeometric functions of matrix argument, and develop asymptotic approximations for these density functions. β–ΊIn the nascent area of applications of zonal polynomials to the limiting probability distributions of symmetric random matrices, one of the most comprehensive accounts is Rains (1998).
    7: 18.3 Definitions
    §18.3 Definitions
    β–ΊFor expressions of ultraspherical, Chebyshev, and Legendre polynomials in terms of Jacobi polynomials, see §18.7(i). …For explicit power series coefficients up to n = 12 for these polynomials and for coefficients up to n = 6 for Jacobi and ultraspherical polynomials see Abramowitz and Stegun (1964, pp. 793–801). … β–Ί
    Bessel polynomials
    β–ΊBessel polynomials are often included among the classical OP’s. …
    8: 10.49 Explicit Formulas
    β–Ί
    §10.49(i) Unmodified Functions
    β–Ί
    §10.49(ii) Modified Functions
    β–Ί k = 0 n a k ⁑ ( n + 1 2 ) ⁒ z n k is sometimes called the Bessel polynomial of degree n . For a survey of properties of these polynomials and their generalizations see Grosswald (1978). … …
    9: 18.18 Sums
    β–Ί
    18.18.27 n = 0 n ! ⁒ L n ( Ξ± ) ⁑ ( x ) ⁒ L n ( Ξ± ) ⁑ ( y ) ( Ξ± + 1 ) n ⁒ z n = Ξ“ ⁑ ( Ξ± + 1 ) ⁒ ( x ⁒ y ⁒ z ) 1 2 ⁒ Ξ± 1 z ⁒ exp ⁑ ( ( x + y ) ⁒ z 1 z ) ⁒ I Ξ± ⁑ ( 2 ⁒ ( x ⁒ y ⁒ z ) 1 2 1 z ) , | z | < 1 .
    10: 18.11 Relations to Other Functions
    β–Ί
    18.11.6 lim n 1 n α ⁒ L n ( α ) ⁑ ( z n ) = 1 z 1 2 ⁒ α ⁒ J α ⁑ ( 2 ⁒ z 1 2 ) .